
AN EFFICIENT PARALLEL POINTER
MACHINE ALGORITHM FOR THE
NCAPROBLEM

A. Dal Pahi, E. Pontelli, D. Ranjan
Department of Computer Science
New Mexico State University
Las Cruces, NM 88003
{apalu,epontell,dranjan}<!ks.nmsu.edu

1. Introduction
The Nearest Common Ancestor (NCA) Problem can be broadly defined as

follows: Given a rooted tree T and two nodes x, y E T, find the common
ancestor of x and y in T that is furthest from the root. In the static version
of the problem, T is known in advance. In the dynamic version T is modified
via some pre-defined operations. In the offiine version, T as well all the NCA
queries are known in advance. NCA problem has been studied extensively
[16, 21, 15, 3, 25, 1, 6, 5, 8, 4) .

We present an efficient parallel pointer machine algorithm for the NCA prob­
lem for trees in the static case. The algorithm assumes that the tree T is
known in advance. It requires O(lgn) parallel time and O(n) processors for
pre-processing the tree, where n is the number of nodes. Thereafter, the algo­
rithm can answer any nca query in O(lglgn) time using a single processor. To
our knowledge, this is the best known parallel pointer machine algorithm for
the NCA problem. Our NCA algorithm requires an efficient parallel solution
of the temporal precedence (TP) problem [20). We provide an efficient parallel
pointer machine algorithm to solve this problem as well.

The paper is organized as follows. In the next section, we give a brief de­
scription of the pointer machine and the parallel pointer machine models. In
Section 3, we present an arithmetic-free compression scheme that was first in­
troduced and used in [8) to obtain an optimal sequential solution for the NCA
Problem on Pure Pointer Machines. We then discuss why straightforward par­
allelizations of this scheme fail (Section 4). In Section 5 we present our parallel
algorithm. We show that our algorithm works correctly and that it requires
O(Ign) parallel time. In Section 6, we compare and constrast our algorithm
with other parallel NCA algorithms. Our NCA algorithm requires an efficient
parallel solution of the TP problem [20]. An efficient parallel pointer machine
algorithm for this problem is presented in Section 7.

R. Baeza-Yates et al. (eds.), Foundations of Information Technology in the Era of Network
 and Mobile Computing © Springer Science+Business Media New York 2002

158

2. Pointer Machines
Pointer Machines have been defined in various different ways [2]. All models

of pointer machines share the common characteristic of disallowing indexing
into an array (i.e., pointer arithmetic), as opposed to RAM models. The Pure
Pointer Machine (PPM) model also disallows constant-time arithmetic opera­
tions. The PPM model is essentially the Linking Automaton model proposed
by Knuth (18]. Further details on PPMs can be found in [2, 18, 23, 22].

As with sequential pointer machine model, various versions of parallel pointer
machines have been proposed. They all share the common characteristic that
no pointer arithmetic is allowed; these models commonly differ in the way
interprocessor communication is realized (see [7] for an extensive discussion).
All models rely on the presence of a number of processors; each processor is
essentially a sequential pointer machine, and all processors execute the same
program in a synchronous fashion. At one end of the spectrum we have the
CRCW Pamllel Pointer Machine [14], where arbitrary (concurrent) read and
write operations on a shared memory are allowed (although the shared mem­
ory cannot be accessed as an array). At the other end of the spectrum, we
have the Parallel PPM model [7]. The Parallel PPM is defined by a collec­
tion of finite state synchronous machines {thus ruling out the use of constant
time arithmetic), each of which can rearrange its communication links by a
bounded amount in one step. Each finite state machine has an ordered set of
input lines (also called links), that can be thought as taps on other proces­
sors' outputs. The usual parallel PPM model allows for unbounded fan-out
but only constant fan-in. Each finite state machine has the ability to change
its links in a restricted way: a finite state machine may redirect one of its links
to point to another unit at a "pointer distance" no more than two from it. It
has been shown that Parallel PPMs are surprisingly powerful. The details of
what exactly constitutes a parallel PPM can be found in [7].

There is a number of models whose computational power lies between that
of the two models defined above, e.g., the CREW /EREW Parallel pointer ma­
chines, the CROW (Concurrent-Read Owner-Write model), and the SIMDAG
model with its variants [13]. Several interesting results regarding their compu­
tational power have been established. In particular, an n-processor CROW
PRAM running in time O(lgn) can be simulated by a Parallel PPM in time
O(lgnlglgn) using polynomially many processors. In addition any step-by­
step simulation of an n processors CROW PRAM by a Parallel PPM requires
time O(lglgn) per step [10).

3. A Sequential Compression Scheme for 'frees
The starting point of our parallel algorithm is an optimal sequential method

for solving the NCA problem on PPMs that was first presented in [8]. This
method is based on a compression scheme aimed at creating a new tree with
logarithmic depth that preserves the ancestor structure of the original tree.
It starts from the initial tree T = To and repeatedly performs two types of

An Efficient Parallel Algorithm for the NCA Problem 159

compressions, thus generating a sequence of trees: To, T1, T2, .. . until a tree
Tk containing a single node is obtained. The trees in this sequence are used
to build a second tree structure (called H-tree), that summarizes the nearest
common ancestor information ofT. The key property of the H-tree is that its
depth is at most logarithmic in the number of nodes of T . This allows a fast
solution of nca queries.

Given Ti, T/+1 the result of leaf-compression of Ti: it is obtained by merging
each leaf of Ti with its parent. If a leaf lis merged with its parent parent(£),
then parent(£) is said to be the direct representative of l. A path-compression
of a tree T/+1 returns a tree T;+l, where each path containing only nodes with
a single child and ending in a leaf of T/:H is replaced by the head of such path.
If a path containing nodes v0 , v1 , ... , Vk is compressed to the node v0 , then v0

is said to be the direct representative of v0 , ... , Vk. A compression of a tree
T; is the tree Ti+t, where Ti+l is the path-compression of T/+1, and T/+1 is
the result of a leaf-compression on Ti. Fig. 1 shows an example of repeated
compression ofT.

The H-Tree

-:· Path
Compress.

' Leaf
Compress .

:-.. :.-.-.:. Path
.-.:. Cot~press,

Lellf
Compress.

Figure 1. Building the H -tree

In order to compute nca queries in optimal time, it is useful to collect the
information about representatives in a separate tree, called Horizontal Tree (H­
tree). The H-tree, H, can be constructed from the sequence of trees obtained
during the compression process (e.g., the sequence of trees shown in Fig. 1).

If a leaf-compression is applied to node v in tree Ti and l is the direct repre­
sentative of v in such compression, then node v is connected to the last occur­
rence of lin a tree Ti (i < j), where l appears in Ti as a direct representative
of a leaf-compression. If all the children of a node w in Ti are leaf-compressed
at the same time, then the representative of such children is node w in Tl;.1 (as
for leaves 10,11 in Fig. 1). If the children of ware leaf-compressed at different

160

points in time (e.g., the children of 1 in Fig. 1), then the representative of such
leaf is the last occurrence of its direct representative in a tree as representative
in a leaf-compression. If a path-compression is applied, then all nodes in the
path are connected to the head of the list in the next tree, as shown in Fig. 1.
Such node is said to be the representative of all nodes in the path.

H is obtained using the single node in the last compressed tree (e.g., the
node in T2 in Fig. 1) as the root and using the links between nodes and
representatives as edges (e.g., the dark edges in Fig. 1). In [8] the following
result was established:

Theorem 1 Let n be the number of nodes in T and let k be the minimum
integer such that Tk has a single node. Then k ~ lg n. In other words, T gets
compressed to a single node within lg n compressions.

The H-tree preserves enough nca information from T, so that it is possible to
answer the query nca(x, y) in T by answering a suitable NCA query in H. In
fact, since the height of His O(lgn), it is possible to compute the nca of any
two nodes in T with worst-case time complexity O(lglgn)[8].

4. From Sequential to Parallel
The direct simulation of the sequential algorithm requires O(lg2 n) parallel

time. Unfortunately, this direct simulation may also require O(lg2 n) time.
Consider, for example, the situation in Fig. 2. The tree is composed of a main
path, with a number of complete trees (of depth k, k- 1, ... , 1) hanging from
it. In this situation, at every leaf compression, a path of length l is created in
the main branch, allowing for the the next path compression to take place; this
path compression will require lgl time. The process is repeated k times, hence
the total parallel time is k lg l. If l is chosen equal to 2k, then the total number
of nodes n = 0(22k), thus k = e(lgn) and the parallel time is k 2 = e(lg2 n).

~1P.
11 1 1 k-1
Figure 2. An example of slow com­
putation

Figure 3. An example of bad H-tree

An Efficient Parallel Algorithm for the NCA Problem 161

We could attempt to improve this running time by allowing path compres­
sions to occur also in the internal paths (i.e., paths that do not end in a leaf);
similarly we could allow leaf compression to be performed at all the leaves and
heads of paths detected at each parallel step. Unfortunately this will not help
our case either. As illustrated by the example in Fig. 3, the H-tree resulting
from these compressions can have linear depth, thus preventing us from using
the H-tree to perform fast computation of nca queries.

However, these considerations do suggest a possible way to improve parallel
running time without loosing the efficient computation of nca queries. The
idea is that the scheme should compress all paths present in the tree (even the
internal ones), but leaf compressions should not be performed on nodes that are
currently not leaves. This idea is translated into a concrete parallel algorithm
in the next section.

5. A Parallel Compression Scheme for Trees
The compression algorithm is a sequential iteration of parallel phases. Each

parallel phase is composed of two parallel steps. The first step is compression
of leaves (leaf compression) in the current tree and the second step contributes
to the compression of paths (path compression) in the current tree using a step
of pointer doubling [11].

Additionally, our efficient parallel solution for the NCA problem requires the
ability to efficiently solve the TP problem (20] in parallel. A parallel version of
the problem and an efficient parallel solution to it is presented in Sect. 7.

5.1. The Algorithm
We start by introducing some notation. For a node v in T, Tv denotes

the subtree ofT rooted at node v. A parallel phase i of the algorithm is the
sequence of two parallel steps called a and b, which are executed at parallel
time i(a) and i(b) respectively. For an integer i, T; denotes the tree after the
ith parallel phase. Given a tree T;, the result of step a applied toT; is the tree
T;'+1 and the result of step b applied toT;'' is T;.

During the processing, nodes in the tree may get marked with the symbol L;
if node v inTis marked L at parallel time i(a) (i(b)), then we denote this with
mf(v) = L (m;(v) = L). We will often refer to this marking as m(v) when the
time is clear from the context. If vis not marked then m(v) =?. Every node
v in T has a pointer 1r to an ancestor of v at parallel time i(a) (i(b)) and we
denote it with 1rf (v) (1r; (v)).

A leaf compression of a tree T; is executed in step i(a) and returns a tree
Tf'+1 such that for each node v in T; (see Fig. 4):

(i) if (m;(v) = L and v currently has no sibling) then
7rf+1 (v) ~ 1r;(p(v)) and mf+1 (7rf+I (v)) ~ L;

(ii) if (m;(v) = L and v has a sibling z and m;(z) =?) then
v is merged with its parent 7rf+I (v) ~ NULL;

162

(iii) if (m;(v) =?and ((v has a sibling z and m;(z) = L) or (v currently has
no sibling))) then

1rf+1 (v) i- 1r;(p(v));

(iv) if (m;(v) =Land v has a left sibling z and m;(z) = L) then
v is merged with its parent and 7rf+l (v) f- NULL;

(v) if (m;(v) = L, v has a right sibling z and m;(z) = L) then
7rf+l (v) f- 1r;(p(v)) and mf+1 (7rf+l (v)) f-L.

A path compression of a tree Tt is executed in step i(b) and returns a tree
T;, such that for each v in Tt, 1r;(v) i- 7rf(7rf(v)) and if mf(v) = L then
m;(1r;(v)) +- L (see Fig. 5).

Figure 5. Example of Path compres-
Figure 4· Example of Leaf compres- sion for node x
sion for node x

If T is the initial tree, then the tree To is a copy of T, such that for each v
in T0 , 7ro(v) = v if v has a sibling, else 1r0 (v) = p(v); in addition, for each leaf l
of To, mo(l) = L. The root is the only exception: 7ro(root) =root.

Fig. 6 provides an example of a compression. The nodes marked represent
the nodes labeled L and the dashed pointers are the 1r pointers. The pointers
1r pointing to NULL are not shown.

Definition 2 A node x is finished after step k if one of the following holds:
1. xis root and mk(x) = L;
2. 3y y is a proper ancestor of x and mk(Y) = L;
3. 11"k(x) =NULL.

The theorem below provides a result that is critical for establishing the the
efficiency of the compression scheme.

Theorem 3 For each parallel time step k and for each node x in T one of the
following holds:

1. x is finished before or at the end of parallel step k;
2. x is marked L during parallel step k, it is unfinished after parallel step

k, ITxi ~ 2k-l and ITp(x)i ~ 2k + 1;

An Efficient Parallel Algorithm for the NCA Problem 163

l.Tr•• To 2. Tree T! 3.

4.

Figure 6. An example of parallel compression
3. xis unmarked and unfinished after parallel step k, and either 11'k(x) =
root or nrp(7rk(x))I-1Txl ~ 2k-l and ITxl ~ 2k + 1).

The complete proof can be found in [9].

Corollary 1 Let n be the number of nodes in T and let k be the smallest integer
such that the root is finished after phase k. Then n ~ 2k-l + 1. In other words,
the algorithm requires at most lg(n- 1) + 1 phases.

If we have n processors that have been assigned to the n different nodes of
T, then both leaf and path compressions will be performed in constant parallel
time. From Corollary 1, the total number of compressions is at most lgn, thus
the total parallel time required by the algorithm is 0 (lg n).

5.2. The H-tree
The H-Tree built in the parallel scheme is the same described in Section 3.

It is possible to reuse the 71' pointers to build H in constant parallel time. Once
a node vis leaf compressed into its parent, 11'(v) is set to NULL. At that time
for every node win the path having vas head, we have 11'(w) = v. The goal is
to maintain this information in the successive phases, avoiding avoiding pointer
doubling if a node is finished (line 26 in Fig. A.1). Once the compression is
completed, every head of a path x has 11'(x) = NULL and the 71' pointer for
every other node y points to the head of the path containing y.

164

Let us introduce another pointer PH, that will be used as the parent pointer
in H. During a leaf compression the pointer PH(v) is set to point to p(v).

Since the root is not leaf compressed, PH(root) is set to point to NULL. For
each head x of a path linT, a new node x' is created in H, with rr(x') = x',
PH(x') = PH(x) and rr(x) = x'. After each step of pointer doubling (applied
to the 1r pointers), every node in a path points to a newly created copy of the
head. For every node x in a path PH(x) = rr(x), and this completes the building
of H.

Finally, for each path the auxiliary data structure for the TP Problem is set
up. It is possible to identify the tails of path in 0(1) time as a node v is a tail
iff for all children w of v rr(v) =f. rr(w). Given a tail t, the corresponding list
is processed as described in Section 7. The complete algorithm is presented in
Appendix A. The lines marked with * are the ones necessary to set up the H
tree.

The H-tree can be used to answer nca queries in the same way as in the
sequential case. In [19] it was shown that there is a PPM algorithm that,
given a tree with height h, preprocesses the tree in time O(n lg h) and then
can compute the nca of any two given nodes in the tree in worst case time
complexity O(lg h) per query. The sequential scheme presented in [19] can
be easily translated into a parallel scheme that uses n processors and O(lg h)
parallel time for preprocessing. Using this result, we can preprocess the H-tree
in parallel time O(lg lg n) using n processors. Then, the nca of in H, and hence
in T, can be computed in time O(lglgn) using a single processor.

6. Discussion
The algorithm described above clearly can be directly implemented on a

CRCW Parallel PPM. A problem arises if we were not allowed concurrent
writes, because too many processors may attempt to update the L mark of the
same node in the tree at the same time (e.g., line 10 in Fig. A.l). This will not
be allowed in the CREW /EREW /CROW parallel pointer machines. This is
also not allowed in the Parallel PPM (as described in Sect. 2) because it would
correspond to an unbound fan-in. However, it is possible to modify the algo­
rithm to overcome this problem. This is essentially obtained by concurrently
performing a pointer doubling in the reverse direction along the branches of
the tree. More precisely, each node u of the tree maintains a pointer 1l"down(u)
which is updated to point to 1l"down(v) whenever the node has only one child v.

In addition, if 1l"down(v) is marked L, then u will mark itself L as well. With
this addition, the fan-in of each unit is restricted to be finite. Moreover, the
algorithm still requires only O(lg n) parallel phases. Hence, the algorithm can
be modified to correctly work on Parallel PPMs.

The algorithm requires n processors to perform the O(lg n) parallel time
preprocessing. After preprocessing, a single processor can answer an nca query
in time O(lg lg n). It is interesting to compare this result with the other parallel
algorithms proposed for the NCA problem. The best known PRAM algorithms
require O(njlgn) processors and work in O(lgn) parallel time for preprocess-

An Efficient Parallel Algorithm for the NGA Problem 165

ing. After preprocessing, a single processor can answer an nca query in time
0(1). Hence, going from a PRAM to a Parallel PPM we incur a penalty of
O(lgn) in number of processors and total time taken, and a penalty of O(lglgn)
time to answer a query. Observe that we do not incur any penalty in parallel
time for preprocessing.

It is also important to observe that if we have any CROW PRAM NCA
algorithm which solves the problem in parallel time O(lgn) with f(n) proces­
sors and answers a query in 0(1) time, then for a generic translation of this
algorithm to a Parallel PPM algorithm (as illustrated in (10]) one can only
claim that it requires parallel time O(lgnlglgn) with polynomially many pro­
cessors, and answers an nca query in time O(lglgn). Hence, the algorithm
presented here is substantially better than a generic translation of any PRAM
NCA algorithm presented in the literature to date to a Parallel PPM algorithm.

It is interesting to note that if we have simple arithmetic capabilities (actu­
ally only constaint-time addition is needed), then we can compute the centroid
path and the H-tree based on it in O(lgn) parallel time. This is obtained by
keeping a count of the number of nodes in the subtree rooted in each node
during the algorithm execution. Each time we have a leaf compression phase
where both children of a node are marked L, instead of leaf compressing the
right child, we leaf compress always the child with a smaller count. It is easy
to show that this will build the centroid path tree.

Note that if we are allowed only one processor to answer an nca query,
then the time required must be at least !1(lglgn) (20]. Hence our algorithm
is optimal in that regard. Observe also that the parallel time O(lg n) used to
perform preprocessing is the best known for any parallel NCA algorithm (in­
cluding PRAM algorithms). If one were allowed arbitrary (e.g., n3) number of
processors, then it is possible to devise a Parallel PPM algorithm that requires
O(lg n) parallel time for preprocessing and answers nca queries in time 0(1)
(10]. This can be simply accomplished by precomputing all the answers in par­
allel (in time O(lg lg n)) and making a different processor responsible for each
different possible query.

7. A Parallel Algorithm For The TP Problem
The TP Problem, first defined in [20], can be reformulated in the context

of parallel computations as follows: given a list L with l nodes representing an
ordered sequence of objects, we want to answer the query precedes(x, y), where
x, yare pointers to nodes in that list. We present a solution to this problem on
Parallel PPMs that requires l processors, O(lg l) parallel preprocessing time,
and O(lglgl) time to answer each query using a single processor thereafter.

The basic idea is to create an auxiliary complete binary tree BT, such that
each leaf is assigned to an element of L. If BT maintains a left to right ordering
in each level, then the precedes(x, y) query can be answered comparing the chil­
dren of nca(x, y) in BT. We maintain this order in each level of BT using sibl
pointers. BT is constructed via a parallel level-by-level construction. During
the construction, each node of BT has one processor associated to it. The root

166

of BT is created in the first step. Then, in parallel (for lgl steps), each new
processor p associated to a node v in BT executes the following operations:
create two new nodes (v1 and Vr) with new processors associated to them, set
sibl pointer of v1 to Vr and set sibl(vr) to left child of sibl(v) .

The last level of BT contains a list of nodes S. Since Lis the input, from the
way inputs are presented in the Parallel PPM model, we can assume that active
processors can be assigned to each element of Lin time O(lgl). We can also
assume that these processors have pointers that points to the previous element
in the list (see Fig. 7). The elements of the original list L are mapped to
the elements of Sin O(lgl) parallel time with O(l) processors using a pointer
doubling scheme, which modifies the sibling list of S and previous pointers
of L. Each node of L contains a pointer map that is used to point to the
corresponding node in S. Initially none of the map pointers is set. In the first
step processor assigned to the head of L sets its map pointer to the head of S.
At the same time, the second element of L sets its map pointer to the second
element of S (see Fig. 8). This is followed by a step of pointer doubling in both
Sand L. InS pointer doubling is accomplished using the sibl pointers, while in
L it is performed using the previous pointers. After a step of pointer doubling,
if the previous pointer of a node v in L whose map pointer is not set points to
a node u whose map pointer is set, then map(v) is set to sibl(map(u)) . Note
that the map pointer of a node in L is set only once. The process continues
until all the nodes in L have their map pointers set. The whole process requires
O(lg l) parallel time.

The last step of the preprocessing constructs in O(lg l) parallel time the
auxiliary data structures (called p-lists) using a straightforward parallelization
of the algorithm presented in (19) . A precedes(x,y) query is then answered by
a single processor in O(lg lg l) time using the algorithm presented in [19).

0000000
All horizontal pointers in L
are previous pointers

Figure 7. BT tree and list L

Acknowledgr:p.ents

- - - ..
Adc1inq the
se~ond maps
po1.nter

~~() '''''"'.oo"""' and act1vat1on of
new nodes

g~o """ ... ~ maps pointers

Figure 8. Example of mapping

The research was supported by NSF grants CCR-9900320, EIA-0130887,
CCR-9875279, CCR-9820852, and EIA-9810732.

An Efficient Parallel Algorithm for the NCA Problem 167

Appendix: Appendix A: Compression Algorithm

1 pardo
2 if (v=root or v has a sibling) 7ro(v) = v else 7ro(v) = p(v);
3 if (v is leaf) mo(v) = L else mo(v) =?;
4 i:=O;
5 iterate
6 Y. leaf compression
7 pardo
8 if (m;(v) = L & v has currently no sibling)
9 7rf+I (v) = 7r;(p(v));
10: mf+I(7rf+I(v)) = L;
11: elseif (m;(v) = L & v has a sibling z & m;(z) =?)
12: 7rf+1(v) =NULL;
13:* PH(v) =p(v);
14: elseif (m;(v) =? & ((v has a sibling z & m;(z) = L)

or (v currently has no sibling)))
15: 7rf+I (v) = 1r;(p(v));
16: elseif (m;(v) = L & v has a left sibling z & m;(z) = L)
17: 7rf+1 (v) =NULL;
18: * PH(v) = p(v);
19: elseif (m;(v) = L & v has a right sibling z & m;(z) = L)
20 ; 7rf+I (v) = 7r i (p(v)) ;
21: mf+1 (7rf+I(v)) = L;
22: else 7rf+1 (v) = 1r;(v);
23: Y. path compression
24: pardo
25: 11"i+I (v) = 7rf+I (7rf+t (v));
26:* if (7ri+I(v) =NULL) 11"i+I(v) = 7rf+1(v);
27: if (mf+1(v)=L) mi+t(1ri+I(v))=L;
28: i:=i+1;
29: loop until m;(root) = L;
30: * PH(root) =NULL;.
31:* pardo x head of a path
32: * create x' & 1r(x') = x'; Y. x' is a copy of x
33:* PH(x') =pH(x);
34:* 1r(x)=x';
35:* pardo PH(x) = 1r(1r(x)); Y. each node in the path of x points to x'
36:* pardo if (v is tail)
37: TP preprocess on the list starting at v and ending at 1r;(v)

Figure A.J. Preprocessing Algorithm

168

References
[1] S. Alstrup and M. Thorup. Optimal Pointer Algorithms for Finding Nearest

Common Ancestors in Dynamic Trees. Journal of Algorithms, 35:169-188, 2000.
[2] A.M. Ben-Amram. What is a Pointer Machine? In SIGACT News, 26(2), 1995.
[3] M.A. Bender and M. Farach-Colton. The LCA Problem Revisited. In Proceedings

of LATIN 2000, Springer Verlag, 2000.
[4] 0. Berkman & U. Vishkin. Recursive *-Tree Parallel Data Structure. FOGS,

1989.
[5] A.L. Buchsbaum et al. Linear-Time Pointer-Machine Algorithms for Least Com­

mon Ancestors, MST Verification, and Dominators. In STOC, ACM Press, 1998.
[6] R. Cole and R. Hariharan. Dynamic LCA Queries on Trees. In Proceedings of the

Symposium on Discrete Algorithms (SODA), pages 235-244. ACM/SIAM, 1999.
[7]. S.A. Cook and P.W. Dymond. Parallel Pointer Machines. Computational Com­

plexity, 3:19-30, 1993.
[8] A. Dal Palu, E. Pontelli, D. Ranjan. An Optimal Algorithm for Finding NCA on

Pure Pointer Machines. Tech. Rep., TR-CS-007/2001, NMSU, 2001.
[9] A. Dal Palu, E. Pontelli, D. Ranjan. An Efficient Parallel Pointer Machine Al­

gorithm for Nearest-Common Ancestor Problem. Tech. Rep., TR-CS-009/2001,
NMSU, 2001.

[10] P.W. Dymond, F.E. Fich, N. Nishimura, P. Ragde, W.L. Ruzzo. Pointers versus
Arithmetic in PRAMs. In Structures in Complexity Theory Conf., IEEE, 1993.

[11] S. Fortune and J. Wyllie. Parallelism in RAMs. In STOC, ACM Press, 1978.
[12] H.N. Gabow and R. E. Tarjan A linear-time algorithm for a special case of

disjoint set union J. Comput. System Sci 30 (1985), 209-221.
[13] L.M. Goldschlager. A Universal Interconnection Pattern for Parallel Computers.

In Journal of the ACM, 29, 1982.
(14] M.T. Goodrich and S.R. Kosaraju. Sorting on a Parallel Pointer Machine with

Applications to Set Expression Evaluation. In FOCS, IEEE, 1989.
(15] D. Gusfield. Algorithms on Strings, 1rees, and Sequences. Cambridge University

Press, 1999.
(16] D. Hare! and R.E. Tarjan. Fast Algorithms for Finding Nearest Common An-

cestor. SIAM Journal of Computing, 13(2):338-355, 1984.
(17] J.W. Hong. On Similarity and Duality of Computation. In FOCS, 1980.
[18] D.E. Knuth. The Art of Computer Programming. Addison-Wesley, 1968.
[19] E. Pontelli and D. Ranjan. Ancestor Problems on Pure Pointer Machines. In

LATIN, Springer Verlag, 2002 (to appear).
[20] D. Ranjan, E. Pontelli, L. Longpre, and G. Gupta. The Temporal Precedence

Problem. Algorithmica, 28:288-306, 2000.
[21] B. Schieber and U. Vishkin. On Finding Lowest Common Ancestors. SIAM J.

Comp., 17:1253-1262, 1988.
[22] A. SchOnhage. Storage Modification Machines. SIAM Journal of Computing,

9(3):490-508, August 1980.
(23) R.E. Tarjan. A Class of Algorithms which Require Nonlinear Time to Maintain

Disjoint Sets. Journal of Computer and System Sciences, 2(18):11Q-127, 1979.
[24] A. Tsakalidis. Maintaining Order in a Generalized Linked List. ACTA Infor­

matica, (21):101-112, 1984.
[25] A.K. Tsakalidis. The Nearest Common Ancestor in a Dynamic Tree. ACTA

Informatica, 25:37-54, 1988.

