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1. Introduction 
In this paper, we classify two problems from different fields with respect 

to their computational complexity: Exact-Four-Colorability and the winner 
problem for Young elections. 

Sections 2 and 3 are concerned with Exact-Four-Colorability. Let Mk ~ N 
be a given set that consists of k noncontiguous integers. Exact-Mk-Colorabili ty 
is the problem of determining whether x(G), the chromatic number of a given 
graph G, equals one of the k elements of the set Mk exactly. In 1987, Wag­
ner [27] proved that Exact-Mk-Colorability is BH2k(NP)-complete, where 
Mk = {6k + 1,6k + 3, ... ,Bk- 1} and BH2k(NP) is the 2kth level of the 
boolean hierarchy over NP. In particular, for k = 1, it is DP-complete to 
determine whether x(G) = 7, where DP = BH2(NP). Wagner raised the ques­
tion of how small the numbers in a k-element set Mk can be chosen such that 
Exact-Mk-Colorability still is BH2k(NP)-complete. In particular, fork= 1, 
he asked if it is DP-complete to determine whether x(G) = 4. 

In Section 3, we solve this question of Wagner and determine the precise 
threshold t E { 4, 5, 6, 7} for which the problem Exact-{ t }-Colorability jumps 
from NP to DP-completeness: It is DP-complete to determine whether x(G) = 
4, yet Exact-{3}-Colorability is in NP. More generally, for each k ;:::: 1, we 
show that Exact-Mk-Colorability is BH2k(NP)-complete for Mk = {3k + 
1,3k + 3, ... ,5k -1}. 

Sections 4 and 5 are concerned with complexity issues related to voting 
schemes. More than a decade ago, Bartholdi, Tovey, and Trick initiated the 
study of electoral systems with respect to their computational properties. In 
particular, they proved NP hardness lower bounds [2] for determining the win­
ner in the voting schemes proposed by Dodgson (more commonly known by 
his pen name, Lewis Carroll) and by Kemeny. Since then, a number of related 
results and improvements of their results have been obtained. Hemaspaan­
dra, Hemaspaandra, and Rothe [15] classified both the winner and the ranking 
problem for Dodgson elections by proving them complete for Pf/P, the class 
of problems solvable in polynomial time by parallel access to an NP oracle. 
E. Hemaspaandra (as cited in [14]) and Spakowski and Vogel (26] obtained 
the analogous result for Kemeny elections; a joint paper by E. Hemaspaandra, 
Spakowski, and Vogel is in preparation. For many further interesting results 
and the state of the art regarding computational politics, we refer to the sur­
vey [14]. 

In this paper, we study complexity issues related to Young and Dodgson 
elections. In 1977, Young proposed a voting scheme that extends the Condorcet 
Principle based on the fewest possible number of voters whose removal makes 
a given candidate c the Condorcet winner, i.e., c defeats all other candidates 
by a strict majority of the votes. We prove that both the winner and the 
ranking problem for Young elections is complete for Pf/P. To this end, we give 
a reduction from the problem Maximum Set Packing Compare, which we also 
prove Pf/P -complete. 
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In Section 5, we study a homogeneous variant of Dodgson elections that 
was introduced by Fishburn [9]. In contrast to the above-mentioned result 
of Hemaspaandra et al. [15], we show that both the winner and the ranking 
problem for Fishburn's homogeneous Dodgson elections can be solved efficiently 
by a linear program that is based on an integer linear program of Bartholdi et 
al. [2]. 

2. Exact-M~;-Colorability and the Boolean 
Hierarchy over NP 

To classify the complexity of problems known to be NP-hard or coNP-hard, 
but seemingly not contained in NP U coNP, Papadimitriou and Yannakakis [22) 
introduced DP, the class of differences of two NP problems. They showed that 
DP contains various interesting types of problems, including uniqueness prob­
lems, critical graph problems, and exact optimization problems. For example, 
Cai and Meyer [5] proved the DP-completeness ofMinimal-3-Uncolorability, 
a critical graph problem that asks whether a given graph is not 3-colorable, 
but deleting any of its vertices makes it 3-colorable. A graph is said to be 
k-colorable if its vertices can be colored using no more than k colors such 
that no two adjacent vertices receive the same color. The chromatic number 
of a graph G, denoted x(G), is defined to be the smallest k such that G is 
k-colorable. Generalizing DP, Cai et al. [4) defined and studied the boolean 
hierarchy over NP. Their work initiated many further results on the boolean 
hierarchy; see e.g., [27, 20, 28, 17) to name just a few. To define the boolean 
hierarchy, we use the symbols A and V, respectively, to denote the complex 
intersection and the complex union of set classes. 

Definition 1 [4] The boolean hierarchy over NP is inductively defined as 
follows: 

BH1(NP) = NP, BH2(NP) = NP A coNP, 

BH~c(NP) = BH~c-2(NP) V BH2(NP) fork;::: 3, and 

BH(NP) = U BH~c(NP). 
/c~l 

Equivalent definitions in terms of different boolean hierarchy normal forms 
can be found in the papers [4, 27, 20); for the boolean hierarchy over ar­
bitrary set rings, we refer to the early work by Hausdorff [13]. Note that 
DP = BH2(NP). 

In his seminal paper [27], Wagner provided sufficient conditions to prove 
problems complete for the levels of the boolean hierarchy. In particular, he 
established the following lemma for BH21c(NP). 

Lemma 2 [27, Thm. 5.1(3)) Let A be some NP-complete problem, let B 
be an arbitrary problem, and let k ;::: 1 be fixed. If there exists a polynomial-time 
computable function f such that, for all strings X1, x2, ... , X21c E E* satisfying 
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that Xj+l E A implies Xj E A for each j with 1 :::; j < 2k, it holds that 

JJ{iJ X; E A}li is odd ¢=> f(xt,X2, ... ,x2k) E B, (1) 

then B is BH2k(NP)-hard. 

For fixed k ;::: 1, let Mk = {6k+ 1, 6k+3, ... , 8k -1 }, and define the problem 
Exact-Mk-Colorability = {G I x(G) E Mk}· In particular, Wagner applied 
Lemma 2 to prove that, for each k;?: 1, Exact-Mk-Colorabili ty is BH2k(NP)­
complete. For the special case of k = 1, it follows that Exact-{7}-Colorability 
is DP-complete. 

Wagner [27, p. 70) raised the question of how small the numbers in a 
k-element set Mk can be chosen such that Exact-Mk-Colorability still is 
BH2k(NP)-complete. Consider the special case of k = 1. It is easy to see 
that Exact-{3}-Colorability is in NP and, thus, cannot be DP-complete un­
less the boolean hierarchy collapses; see Proposition 3 below. Consequently, 
for k = 1, Wagner's result leaves a gap in determining the precise thresh­
old t E {4,5,6, 7} for which Exact-{t}-Colorability jumps from NP to DP­
completeness. Closing this gap, we show that it is DP-complete to deter­
mine whether x(G) = 4. More generally, answering Wagner's question for 
each k;?: 1, we show that Exact-Mk-Colorability is BH2k(NP)-complete for 
Mk = {3k + 1,3k + 3, ... , 5k -1}. 

3. Solving Wagner's Question 
Proposition 3 Fix any k 2: 1, and let Mk be any set that contains k non­
contiguous positive integers including 3. Then, Exact-Mk-Colorability is in 
BH2k-l (NP); in particular, fork= 1, Exact-{3}-Colorability is in NP. 

Hence, Exact-Mk-Colorability is not BH2k(NP)-complete unless the 
boolean hierarchy, and consequently the polynomial hierarchy, collapses. 
Proposition 3 easily follows from the fact that it can be tested in polynomial 
time whether a given graph is 2-colorable; for details of the proof, see [23]. 

Theorem 4 For fixed k 2: 1, let Mk = {3k + 1, 3k + 3, ... , 5k- 1}. Then, 
Exact-Mk-Colorability is BH2k(NP)-complete. In particular, for k = 1, it 
follows that Exact-{4}-Colorability is DP-complete. 

Proof. We apply Lemma 2 with A being the NP-complete problem 3-SAT 
and B being Exact-Mk-Colorability, where Mk = {3k+1,3k+3, ... ,5k-1} 
for fixed k. The standard reduction u from 3-SAT to 3-Colorability has the 
following property [10]: 

¢> E 3-SAT ===> x(u(¢>)) = 3 and ¢> (/. 3-SAT ===> x(u(¢>)) = 4. (2) 

Using the PCP theorem, Khanna, Linial, and Safra [19] showed that it is 
NP-hard to color a 3-colorable graph with only four colors. Guruswami and 
Khanna [11] gave a novel proof of the same result that does not rely on the 
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PCP theorem. We use their direct transformation, call it p, that consists of 
two subsequent reductions-first from 3-SAT to the independent set problem, 
and then from the independent set problem to 3-Colorability-such that 
4> E 3-SAT implies x(p(lj>)) = 3, and 4> ~ 3-SAT implies X(P(lf>)) ;::: 5. Guruswami 
and Khanna [11] note that the graph H = p(l/>) they construct always is 6-
colorable. In fact, their construction even gives that H always is 5-colorable; 
hence, we have: 

4> E 3-SAT ==:::} x(p(l/>)) = 3 and 4> ~ 3-SAT ==:::} X(P(l/>)) = 5. (3) 

To see why, look at the reduction in [11). The graph H consists of tree-like 
structures whose vertices are replaced by 3 x 3 grids, which always can be 
colored with three colors, say 1, 2, and 3. In addition, some leaves of the tree­
like structures are connected by leaf-level gadgets of two types, the "same row 
kind" and the "different row kind." The latter gadgets consist of two vertices 
connected to some grids, and thus can always be colored with two additional 
colors. The leaf-level gadgets of the "same row kind" consist of a triangle whose 
vertices are adjacent to two grid vertices each. Hence, regardless of which 3-
coloring is used for the grids, one can always color one triangle vertex, say t1, 
with a color c E {1, 2, 3} such that cis different from the colors of the two grid 
vertices adjacent to t1. Using two additional colors for the other two triangle 
vertices implies x(H) $ 5, which proves Equation (3). 

The join operation ffi on graphs is defined as follows: Given two disjoint 
graphs A= (VA,EA) and B = (VB,EB), their join AffiB is the graph with 
vertex set VAa>B = VA U VB and edge set EAa>B = EA U EB U {{a,b} I a E 
VA and bE VB}· Note that ffi is an associative operation on graphs and x(Affi 
B) = x(A) + x(B). 

Let l/>1, l/>2, ... , l/>21r. be 2k given boolean formulas satisfying 4>H1 E 3-SAT ==:::} 

4>; E 3-SAT for each j with 1 $ j < 2k. Define 2k graphs H1, H2, ... , H21r. as 
follows. For each i with 1 $ i ~ k, define H2i-l = p(4>2i-l) and H2i = u(l/>2i)· 
By Equations (2) and (3), 

{ 
3 if 1 ~ j $ 2k and l/J; E 3-SAT 

x(H;) = 4 ifj=2iforsomeiE{1,2, ... ,k}andl/>j~3-SAT (4) 
5 if j = 2i -1 for some i E {1,2, ... ,k} and </J; ~ 3-SAT. 

For each i with 1 ~ i $ k, define the graph Gi to be the disjoint union of 
the graphs H2i-1 and H2i. Thus, x(Gi) = max{x(H2i-l), x(H2i)}, for each i 
with 1 ~ i $ k. The construction of our reduction f is completed by defining 
/(4>1 , l/>2, ... , 4>2~r.) = G, where the graph G = Ef)~=l G; is the join of the graphs 
Gt,G2, ... ,G~r.. Thus, 

k k 

x(G) = L:x(Gi) = L:max{x(H2i-d, x(H2i)}. (5) 
i=l i=l 
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It follows from our construction that 

ll{i I ¢>; E 3-SAT}II is odd 
-<==> (3i : 1 ~ i ~ k )[ ifJ1 , . . . , if>'u-1 E 3-SAT and ¢2i, . . . , ifJ2k ¢ 3-SAT] 

<~l (3i: l~i~k) [tx(Gj)=3(i-1)+4+5(k-i)=5k-2i+l] 
J=1 

(5) 
-¢::::::::> x(G)EMk={3k+1,3k+3, ... ,5k-1} 
-<==> /(¢1, ¢2, ... , ¢2k) = G E Exact-Mk-Colorability. 

Hence, Equation (1) is satisfied. Lemma 2 implies that 
Exact-Mk-Colorability is BH2k(NP)-complete. I 

And now for something completely different [6]: Voting schemes. 

4. Hardness of Determining Young Winners 
We first give some background from social choice theory. Let C be the 

set of all candidates (or alternatives). We assume that each voter has strict 
preferences over the candidates. Formally, the preference order of each voter 
is strict (i.e., irreflexive and antisymmetric), transitive, and complete (i.e., all 
candidates are ranked by each voter). An election is given by a preference 
profile, a pair (C, V) such that C is a set of candidates and V is the multiset of 
the voters' preference orders on C. Note that distinct voters may have the same 
preferences over the candidates. A voting scheme (or social choice function, 
SCF for short) is a rule for how to determine the winner(s) of an election; i.e., 
an SCF maps any given preference profile to society's aggregate choice set, the 
set of candidates who have won the election. For any SCF f and any preference 
profile ( C, V), f ( ( C, V)) denotes the set of winning candidates. For example, an 
election is won according to the majority rule by any candidate who is preferred 
over any other candidate by a strict majority of the voters. Such a candidate is 
called the Condorcet winner. In 1785, Marie-Jean-Antoine-Nicolas de Caritat, 
the Marquis de Condorcet, noted in his seminal essay (7] that whenever there 
are at least three candidates, say A, B, and C, the majority rule may yield 
cycles: A defeats Band B defeats C, and yet C defeats A. Thus, even though 
each individual voter has a rational (i.e., transitive or non-cyclic) preference 
order, society may behave irrationally and Condorcet winners do not always 
exist. This observation is known as the Condorcet Paradox. The Condorcet 
Principle says that for each preference profile, the winner of the election is to 
be determined by the majority rule. An SCF is said to be a Condorcet SCF if 
and only if it respects the Condorcet Principle in the sense that the Condorcet 
winner is elected whenever he or she exists. Note that Condorcet winners are 
uniquely determined if they exist. Many Condorcet SCFs have been proposed 
in the social choice literature; for an overview of the most central ones, we refer 
to the work of Fishburn (9]. They extend the Condorcet Principle in a way 
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that avoids the troubling feature of the majority rule. In this paper, we will 
focus on only two such Condorcet SCFs, the Dodgson voting scheme (8] and 
the Young voting scheme [29]. 

In 1876, Charles L. Dodgson (better known by his pen name, Lewis Carroll) 
proposed a voting scheme [8] that suggests that we remain most faithful to the 
Condorcet Principle if the election is won by any candidate who is "closest" to 
being a Condorcet winner. To define "closeness," each candidate c in a given 
election (C, V) is assigned a score, denoted DodgsonScore(C,c, V), which is 
the smallest number of sequential interchanges of adjacent candidates in the 
voters' preferences that are needed to make c a Condorcet winner. Here, one 
interchange means that in (any) one of the voters two adjacent candidates are 
switched. A Dodgson winner is any candidate with minimum Dodgson score. 
Using Dodgson scores, one can also tell who of two given candidates is ranked 
better according to the Dodgson SCF. 

Young's approach to extending the Condorcet Principle is reminiscent of 
Dodgson's approach in that it is also based on altered profiles. Unlike Dogson, 
however, Young (29] suggests that we remain most faithful to the Condorcet 
Principle if the election is won by any candidate who is made a Condorcet 
winner by removing the fewest possible number of voters, instead of doing the 
fewest possible number of switches in the voters' preferences. For each can­
didate c in a given preference profile (C, V), define YoungScore(C, c, V) to be 
the size of a largest subset of V for which c is a Condorcet winner. A Young 
winner is any candidate with a maximum Young score. Homogeneous variants 
of these voting schemes will be defined in Section 5. 

To study computational complexity issues related to Dodgson's voting 
scheme, Bartholdi, Tovey, and Trick (2] defined the following decision prob­
lems. 

Dodgson Winner 

Instance: A preference profile (C, V} and a designated candidate c E C. 
Question: Is c a Dodgson winner of the election? That is, is it true 
that for all dEC, DodgsonScore(C,c, V) ~ DodgsonScore(C,d, V)? 

Dodgson Rallking 

Instance: A preference profile (C, V} and two designated candidates 
c,de C. 
Question: Does c tie-or-defeat d in the election? That is, is it true 
that 

DodgsonScore(C,c, V) ~ DodgsonScore(C,d, V)? 

Bartholdi et al. [2] established an NP-hardness lower bound for both these 
problems. Their result was optimally improved by Hemaspaandra, Hemaspaan­
dra, and Rothe [15J who proved that Dodgson Winner and Dodgson Ranking 
are complete for P 11 P, the class of problems solvable in polynomial time with 
parallel (i.e., truth-table) access to an NP oracle. As above, we define the 
corresponding decision problems for Young elections as follows. 
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Young Winner 

Instance: A preference profile (C, V) and a designated candidate c E C. 
Question: Is c a Young winner of the election? That is, is it true that 
for all dEC, YoungScore(C,c, V) ~ YoungScore(C,d, V)? 

Young Ranking 

Instance: A preference profile (0, V) and two designated candidates 
c,deC. 
Question: Does c tie-or-defeat d in the election? That is, is it true 
that 

YoungScore(C,c, V) ~ YoungScore(C,d, V)? 

The main result in this section is that the problems Young Winner and Young 
Ranking are complete for p~P. In Theorem 6 below, we give a reduction from 
the problem Maximum Set Packing Compare defined below. For a given familiy 
S of sets, let ~~:(S) be the maximum number of pairwise disjoint sets inS. 

Maximum Set Packing Compare 

Instance: Two families St and S2 of sets such that, fori E {1, 2}, each 
set S E S; is a nonempty subset of a given set B;. 
Question: Does it hold that ~t(St) ~ ~t(S2)? 

Theorem 5 Maximum Set Packing Compare is Pf~P -complete. 

Theorem 5 is proven (see the full version [24] for details) via a reduction from 
Independence Number Compare, which in turn can be shown p~P -complete by 
the techniques of Wagner [27]; see (25, Thm. 12] for an explicit proof of this 
result. Independence Number Compare has also been used in [16]. To define 
the problem, Jet G be an undirected, simple graph. An independent set of G is 
any subset I of the vertex set of G such that no two vertices in I are adjacent. 
For any graph G, let a( G) be the independence number of G, i.e., the size of a 
maximum independent set of G. 

Independence Number Compare 

Instance: Two graphs G1 and G2. 
Question: Does it hold that a(Gt) ~ a(G2)? 

Now, we prove the main result of this section. 

Theorem 6 Young Ranking and Young Winner are p~P -complete. 

Proof. It is easy to see that Young Ranking and Young Winner are in p~P. To 
prove the p~P lower bound, we first give a polynomial-time many-one reduction 
from Maximum Set Packing Compare to Young Ranking. 

Let B1 = {x1, x2, ... , Xm} and B2 = {y1, y2, ... ,Yn} be two given sets, and 
let S1 and S2 be given families of subsets of B1 and B2, respectively. Recall 
that ~~:(S;), for i E {1, 2}, is the maximum number of pairwise disjoint sets 
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in Si; w.l.o.g., we may assume that ~~:(Si) > 2. We define a preference profile 
(0, V) such that c and dare designated candidates inC, and it holds that: 

YoungScore(O, c, V) = 2 · ~~:(S1 ) + 1; 
YoungScore(O,d, V) = 2 ·11:(82) + 1. 

(6) 
(7) 

Define the set C of candidates as follows: Create the two designated candi­
dates c and d; for each element Xi of B1 , create a candidate Xii for each element 
Yi of B2, create a candidate y;; finally, create two auxiliary candidates, a and b. 

Define the set V of voters as follows: 

• Voters representing S1 : For each set E E S~o create a single voter 
VE as follows: 

- Enumerate E as { e~o e2, ... , ell Ell} (renaming the candidates e; 
from {:z:1,z2, ... ,:z:m} for notational convenience), and enumerate 
its complement E = B1- E as {e~oe2, ... ,em-liEU}· 

- To make the preference orders easier to parse, we use 

"E" to represent the text string "e1 > e2 > · · · > eiiEU"i 

"E" to represent the text string "e1 > e2 > ···>em-liEU"; 

"B!" to represent the text string "z1 > Z2 > · · · > Zm"i 
"m" to represent the text string "111 > 112 > · · · > Yn". 

- Create one voter v E with preference order: 

E>a>c> E>m>b>d. (8) 

• Additionally, create two voters with preference order: 
d d c > Bt > a > B2 > b > d, (9) 

and create IIS11l - 1 voters with preference order: 

Bt > c > a > m > b > d. (10) 

• Voters representing S2 : For each set FE S2, create a single voter 
VF as follows: 

- Enumerate F as {ft, /2, ... , f11FII} (renaming the candidates I; 
from {y11 7J2, ••• , Yn} for notational convenience), and enumerate 
its complement F = Bt- F as {71,72, ... ,fn-IIFII}. 

- To make the preference orders easier to parse, we use 

"P" to represent the text string "It > h > · · · > fiiFU"i 

"P" to represent the text string "ft > f2 > ... > fn-IIFII"· 
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- Create one voter VF with preference order: 

rt =:t =t 
1' > b > d > F > Bt > a > c. 

• Additionally, create two voters with preference order: 
=t =t 

d > B2 > b > Bt >a> c, 

and create IIS2II- 1 voters with preference order: 

~ > d > b > .Bi > a > c. 

We now prove Equation (6): YoungScore(C,c, V) = 2 · K.(Sl) + 1. 

(11) 

(12) 

(13} 

Let Et, E2, ... , E,.(sl) E S1 be K.(SI) pairwise disjoint subsets of B1. Con-
sider the following subset V s;; V of the voters. V consists of: (a) every voter 
VE; corresponding to the set E;, where 1 $ i $ K.(SI); (b) the two voters given 
in Equation (9}; and (c) K.(Sl)- 1 voters of the form given in Equation (10). 

Then, !lVII = 2 · K.(S1) + 1. Note that a strict majority of the voters in V 
prefer cover any other candidate, and thus cis a Condorcet winner in (C, V). 
Hence, 

YoungScore(C, c, V) ~ 2 · K.(St) + 1. 

Conversely, to prove that YoungScore(C,c, V) $ 2 · K.(S!} + 1, we need the 
following lemma. The proof of Lemma 7 can be found in the full version (24]. 

Lemma 7 For any A with 3 <A$ IIS1 11 + 1, let VA be any subset of V such 
that V.\ contains exactly A voters of the form {9) or ( 10) and c is the Condorcet 
winner in (C, V.\)· Then, V.\ contains exactly A- 1 voters of the form {8} and 
no voters of the form {11}, {12}, or {13}. Moreover, the A - 1 voters of the 
form {8) in VA represent pairwise disjoint sets from S 1 • 

To continue the proof of Theorem 6, let k = YoungScore(C, c, V). Let V ~ V 
be a subset of size k such that cis the Condorcet winner in ( C, V}. Suppose that 
there are exactly A $ IIS1 II + 1 voters of the form (9) or (10) in V. Since c, the 
Condorcet winner of ( c, V)' must in particular outpoll a, we have A ~ r ~ l· 
By our assumption that K.(S!} > 2, it follows from k ~ 2 · K.(S1) + 1 that A> 3. 
Lemma 7 then implies that there are exactly A- 1 voters of the form (8) in V, 
which represent pairwise disjoint sets from S1, and V contains no voters of the 
form (11), (12), or (13). Hence, k = 2 ·A -1 is odd, and /c2l =A -1 $ K.(SI), 
which proves Equation (6). Equation (7) can be proven analogously. Thus, we 
have K.(SI) ~ K.(S2 } if and only if YoungScore(C,c, V) ~ YoungScore(C,d, V). 
Hence, Young Ranking is PfiP -complete. Modifying the above reduction, we 
can also prove Young Winner PfjP -complete, which completes the proof of The­
orem 6. For details of the modified reduction, we refer to the full version (24). 
I 
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5. Homogeneous Young and Dodgson Voting 
Schemes 

Social choice theorists have studied many "reasonable" properties that any 
"fair" election procedure arguably should satisfy, including very natural proper­
ties such as nondictatorship, monotonicity, the Pareto Principle, and indepen­
dence of irrelevant alternatives. One of the most notable results in this regard 
is Arrow's famous Impossibility Theorem [1] stating that the just-mentioned 
four properties are logically inconsistent, and thus no "fair" voting scheme can 
exist. In this section, we are concerned with another quite natural property, 
the homogeneity of voting schemes (see [9, 29]). 

Definition 8 A voting scheme f is said to be homogeneous if and only if 
for each preference profile (C, V) and for all positive integers q, it holds that 
f({C, V}) = f({C,qV}), where qV denotes V replicated q times. 

Homogeneity means that splitting each voter v E V into q voters, each of 
whom has the same preference order as v, yields exactly the same choice set 
of winning candidates. Fishburn [9] showed that neither the Dodgson nor the 
Young voting schemes are homogeneous. For the Dodgson SCF, he presented 
a counterexample with seven voters and eight candidates; for the Young SCF, 
he modified a preference profile constructed by Young with 37 voters and five 
candidates. Fishburn [9] provided the following limit devise in order to de­
fine homogeneous variants of the Dodgson and Young SCFs. For example, 
the Dodgson scheme can be made homogeneous by defining from the function 
DodgsonScore for each preference profile (C, V} and designated candidate c E C 
the function 

D d S "(C V) 1. DodgsonScore(C,c,qV) o gson core ,c, = 1m . 
q-+oo q 

The resulting SCF is denoted by Dodgson* SCF, and the corresponding winner 
and ranking problems are denoted by Dodgson* Winner and Dodgson* Ranking. 
Analogously, the Young voting scheme defined above can be made homoge­
neous by defining YoungScore". Remarkably, Young [29] showed that the cor­
responding problem Young• Winner can be solved by a linear program. Hence, 
the problem Young* Winner is efficiently solvable, since the problem Linear 
Programming can be decided in polynomial time [12], see also [18]. We es­
tablish an analogous result for the problems Dodgson* Winner and Dodgson• 
Ranking. The proof of Theorem 9 can be found in the full version [24]. 

Theorem 9 Dodgson* Winner and Dodgson* Ranking can be solved in poly­
nomial time. 
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