Skip to main content

Hurricane Wind Fields, Multivariate Modeling

  • Reference work entry
Encyclopedia of GIS

Synonyms

Cross-covariance models; Nonseparable multivariate models; Bayesian inference; Statistical space-time modeling; Gaussian; Stationarity; Separability; Matrix, inverse; Determinant; Dimension reduction; Parametric model; MCMC; GIbb's sampling; Markov random field (MRF)

Definition

Multivariate Spatial and Spatiotemporal Processes

Statistical space–time modeling has proven to be an essential tool in the environmental sciences to describe complex spatial and temporal behavior of physical processes. Statistical models also allow for prediction of underlying spatial-temporal processes at new locations and times based on noisy observations. In many cases the data being analyzed consist of multivariate observations, meaning multiple variables have been measured at the same location and time. For example, air monitoring networks often record multiple pollutant levels at a single monitoring site. The same is true for meteorological stations that may record air temperature, humidity,...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Recommended Reading

  1. Banerjee, S., Carlin, B.P., Gelfand, A.E.: Hierarchical modeling and analysis for spatial data. Chapman & Hall, New York (2004)

    MATH  Google Scholar 

  2. Blumberg, A.F., Mellor, G.L.: A description of a three-dimensional coastal ocean circulation model. In: Heaps, N.S. (ed.) Three-Dimensional Coastal Ocean Models, pp. 1–16. American Geophysical Union, Washington, D.C. (1987)

    Chapter  Google Scholar 

  3. Foley, K.M., Fuentes, M.: A statistical framework to combine multivariate spatial data and physical models for hurricane surface wind prediction. JABES, to appear

    Google Scholar 

  4. Fuentes, M.: A high frequency kriging approach for non-stationary environmental processes. Environmetrics 12, 469–483 (2001)

    Article  Google Scholar 

  5. Fuentes, M., Chen, L., Davis, J.M., Lackmann, G.M.: Modeling and predicting complex space-time structures and patterns of coastal wind fields. Environmetrics 16, 449–464 (2005)

    Article  MathSciNet  Google Scholar 

  6. Fuentes, M., Raftery, A.: Model evaluation and spatial interpolation by Bayesian combination of observations with outputs from numerical models. Biometrics 61, 36–45 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  7. Gelfand, A.E., Schmidt, A.M., Banerjee, S., Sirmans, C.F.: Nonstationary multivariate process modeling through spatially varying coregionalization (with discussion). TEST 13, 1–50 (2004)

    Article  MathSciNet  Google Scholar 

  8. Gelfand, A.E., Vounatsou, P.: Proper multivariate conditional autoregressive models for spatial data analysis. Biostatistics 4, 11–25 (2003)

    Article  MATH  Google Scholar 

  9. Holland, G.: An analytic model of the wind and pressure profiles in hurricanes. Monthly Weather Review 108, 1212–1218 (1980)

    Article  Google Scholar 

  10. Houston, S.H., Shaffer, W.A., Powell, M.D., Chen, J.: Comparisons of HRD and SLOSH surface wind fields in hurricanes: Implications for storm surge modeling. Weather and Forecasting 14, 671–686 (1999)

    Article  Google Scholar 

  11. Hsu, S.A., Yan, Z.: A note on the radius of maximum wind for hurricanes. J. Coastal Res. 14, 667–668 (1998)

    Google Scholar 

  12. Kibria, B.M.G., Sun, L., Zidek, J.V., Le, N.D.: Bayesian spatial prediction of random space-time fields with application to mapping PM2.5 exposure. J. Am. Stat. Assoc. 97, 112–124 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  13. Peng, M., Xie, L., Pietrafesa, J.: A numerical study of storm surge and inundation in the Croatan-Albemarle-Pamlico Estuary System. Estuarine, Coastal and Shelf Science 59, 121–137 (2004)

    Article  Google Scholar 

  14. Pietrafesa, L.J., Xie, L., Morrison, J., Janowitz, G.S., Pelissier, J., Keeter, K., Neuherz, R.A.: Numerical modelling and computer visualization of the storm surge in and around the Croatan-Albemarle-Pamlico Estuary system produced by Hurricane Emily of August (1993). Mausam 48, 567–578 (1997)

    Google Scholar 

  15. Schmidt, A.M., Gelfand, A.E.: A Bayesian coregionalization approach for multivariate pollutant data. J. Geophys. Res. 108, 8783 (2003)

    Article  Google Scholar 

  16. Spiegelhalter, D., Thomas, A., Best, N., Gilks, W.: Bugs.5 Bayesian inference using Gibbs sampling. Manual, version ii. MRC Biostatistics Unit, Institute of Public Health, Cambridge, UK (1996)

    Google Scholar 

  17. Wackernagel, H.: Multivariate geostatistics: An introduction with applications. Springer-Verlag, New York (2003)

    Google Scholar 

  18. Wikle, C.K.: Hierarchical models in environmental science. Int. Stat. Rev. 71, 181–199 (2003)

    Article  MATH  Google Scholar 

  19. Wikle, C.K., Milliff, R.F., Nychka, D., Berliner, L.M.: Spatiotemporal hierarchical Bayesian modeling: Tropical ocean surface winds. J. Am. Stat. Assoc. 96, 382–397 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  20. Xie, L., Bao, S., Pietrafesa, L., Foley, K., Fuentes, M.: A real-time hurricane surface wind forecasting model: Formulation and verification. Monthly Weather Review 134, 1355–1370 (2006)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag

About this entry

Cite this entry

Foley, K., Fuentes, M. (2008). Hurricane Wind Fields, Multivariate Modeling. In: Shekhar, S., Xiong, H. (eds) Encyclopedia of GIS. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-35973-1_572

Download citation

Publish with us

Policies and ethics