Skip to main content

Indoor Positioning, Bayesian Methods

  • Reference work entry
Encyclopedia of GIS

Synonyms

Geolocation; Localization; Location estimation; Bayesian estimation; Mobile robotics; Location tracking

Definition

Indoor positioning, generally speaking, is the technology through which the geospatial location coordinates of a number of mobile or stationary objects are determined in indoor environments. A typical indoor positioning system usually estimates the target object's location from observation data collected by a set of sensing devices or sensors. When the target object is stationary the location estimation problem is also referred to as localization problem. On the other hand, estimating the location of mobile target objects is known as target tracking.

Bayesian estimation methods are based on the Bayes' theorem, a well-known result in probability theory, which relates the conditional and marginal probability distributions of random variables. Bayesian approaches are fundamentally different from the classical approaches such as maximum‐likelihood estimator...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Recommended Reading

  1. Pahlavan, K., Li, X., Makela, J.: Indoor geolocation science and technology. IEEE Commun. Mag. 40(2), 112–118 (2002)

    Article  Google Scholar 

  2. Hightower, J., Borriello, G.: Location Systems for ubiquitous computing. Computer 34(8), 57–66 (2001)

    Article  Google Scholar 

  3. Christ, T.W., Godwin, P.A., Lavigne, R.E.: A prison guard duress alarm location system. In: Proceedings of the IEEE International Carnahan Conference on Security Technology, vol.1, pp. 106–116, Ottawa, Ont., Canada (1993)

    Google Scholar 

  4. Werb, J., Lanzl, C.: Designing a positioning system for finding things and people indoors. IEEE Spectrum 35, 71–78 (1998)

    Article  Google Scholar 

  5. Ladd, A.M., Bekris, K.E., Marceau, G., Rudys, A., Wallach, D.S., Kavraki, L.E.: Using Wireless Ethernet for Localization. IROS, Lausanne (2002)

    Google Scholar 

  6. Bahl, P., Padmanabhan, V.N.: RADAR: An in-building RF-based user location and tracking system. IEEE Infocom 2, 775–784 (2000)

    Google Scholar 

  7. Kay, S.M.: Fundamentals of Statistical Signal Processing: Estimation Theory. Prentice Hall, Upper Saddle River, NY (1993)

    MATH  Google Scholar 

  8. Doucet, A., de Freitas, N., Gordon, N. (eds.): Sequential Monte Carlo in Practice. Springer-Verlag, New York, NY (2001)

    MATH  Google Scholar 

  9. Arulampalam, M.S., Maskell, S., Gordon, N., Clapp, T.: A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking. IEEE Trans. Signal Process. 50, 174–188 (2002)

    Article  Google Scholar 

  10. Gustafsson, F., Gunnarsson, F., Bergman, N., Forssell, U.: Particle filters for positioning, navigation and tracking. IEEE Trans. Signal Process. 50, 425–437 (2002)

    Article  Google Scholar 

  11. Fox, D., Hightower, J., Kauz, H., Liao, L., Patterson, D.: Bayesian Techniques for Location Estimation. In: Proceedings of the Workshop on Location-Aware Computing (UBICOMP Conference), Seattle, WA, October 2003

    Google Scholar 

  12. Hall, D.L.: Mathematical Techniques in Multisensor Data Fusion. Artech, Boston, MA (1992)

    Google Scholar 

  13. Cui, N., Hong, L., Layne, J.R. A comparison of nonlinear filtering approaches with an application to ground target tracking. Signal Process. 85, 1469–1492 (2005)

    Article  MATH  Google Scholar 

  14. Roos, T., Myllymaki, P., Tirri, H., Misikangas, P., Sievanen, J.: A Probabilistic Approach to WLAN User Location Estimation. Int. J. Wirel. Inf. Netw. 9(3), 155–164 (2002)

    Article  Google Scholar 

  15. Roos, T., Myllymäki, P., Tirri, H.: A statistical modeling approach to location estimation. IEEE Trans. Mobile Comput. 1, 59–69 (2002)

    Article  Google Scholar 

  16. Bohn, J., Vogt, H.: Robust Probabilistic Positioning Based on High-Level Sensor Fusion and Map Knowledge. Tech. Rep. 421. Institute for Pervasive Computing, Distributed Systems Group, Swiss Federal Institute of Technology (ETH), Zurich (2003)

    Google Scholar 

  17. Reid, D.B.: An algorithm for tracking multiple targets. IEEE Trans. Automat. Control 24, 843–854 (1979)

    Article  Google Scholar 

  18. Bar-Shalom, Y., Fortmann, T.E.: Tracking and data association. Mathematics in Science and Engineering Series 179. Academic, San Diego (1988)

    Google Scholar 

  19. Oh, S., Russell, S., Sastry, S.: Markov chain Monte Carlo data association for general multiple-target tracking problems. In: Proceedings of the 43rd IEEE Conference on Decision and Control, Paradise Island, Bahamas (2004)

    Google Scholar 

  20. Hue, C., Le Cadre, J.-P., Perez, P.: Posterior Cramer-Rao bounds for multi-target tracking. IEEE Trans. Aerospace Electron. Syst. 42(1), 37–49 (2006)

    Article  Google Scholar 

  21. Ramadurai, V., Sichitiu, M.L.: Localization in wireless sensor networks: a probabilistic approach. Proc. of the 2003 International Conference on Wireless Networks (ICWN2003), vol.1, pp. 275–281, Las Vegas, NV, Jan. (2003)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag

About this entry

Cite this entry

Yang, J., Li, X. (2008). Indoor Positioning, Bayesian Methods. In: Shekhar, S., Xiong, H. (eds) Encyclopedia of GIS. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-35973-1_627

Download citation

Publish with us

Policies and ethics