Skip to main content

Linear Versus Polynomial Constraint Databases

  • Reference work entry
Encyclopedia of GIS

Synonyms

Linear constraint databases; First-order logic with constraints queries

Definition

The framework of constraint databases provides a rather general model for spatial databases [14]. In the constraint model, a spatial database contains a finite number of relations, that, although conceptually viewed as possibly infinite sets of points in the real space, are represented as a finite union of systems of polynomial equations and inequalities.

More specifically, in the polynomial constraint database model, a relation is defined as a boolean combination (union, intersection, complement) of subsets of some real space ℝn (in applications, typically n = 2 or 3) that are definable by polynomial constraints of the form p(x 1, …, x n ) ≥ 0, where p is a polynomial in the real variables x 1, …, x n with integer coefficients. For example, the spatial relation consisting of the set of points in the upper half of the unit disk in ℝ2 can be represented by the formula x 2 + y 2≤ 1 ⋀y≥ 0. In...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Recommended Reading

  1. Afrati, F., Cosmadakis, S., Grumbach, S., Kuper, G.: Linear versus polynomial constraints in database query languages. In: Borning, A. (ed.) Proceedings of the 2nd Workshop on Principles and Practice of Constraint Programming. Lecture Notes in Computer Science, vol. 874, pp. 181–192 Springer-Verlag, Heildelberg (1994)

    Chapter  Google Scholar 

  2. Benedikt, M., Dong, G., Libkin, L., Wong, L.: Relational expressive power of constraint query languages. J. ACM 45(1), 1–34 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  3. Benedikt, M., Keisler, H.J.: Definability over linear constraints. In: Clote, P., Schwichtenberg, H. (eds.) Proceedings of Computer Science Logic, 14th Annual Conference of the EACSL. Lecture Notes in Computer Science, vol. 1862, pp. 217–231, Springer-Verlag, Heidelberg (2000)

    Google Scholar 

  4. Bochnak, J., Coste, M., Roy, M.-F.: Géométrie algébrique réelle. Springer-Verlag, Heidelberg (1987)

    MATH  Google Scholar 

  5. de Berg, M., van Kreveld, M., Overmars, M., Schwarzkopf, O.: Computational Geometry: Algorithms and Applications. Springer-Verlag, Heidelberg (2000)

    MATH  Google Scholar 

  6. Grumbach, S.: Implementing linear constraint databases. In: Gaede, V., Brodsky, A., Günther, O., Srivastava, D., Vianu, V., Wallace, M. (eds.) Proceedings of the 2nd Workshop on Constraint Databases and Applications, Springer-Verlag, Berlin, New York, 1997

    Google Scholar 

  7. Grumbach, S., Rigaux, P., Scholl, M., Segoufin, L.: DEDALE, a spatial constraint database. In: Cluet, S., Hull, R. (eds.) Proceedings of the 6th International Workshop on Database Programming Languages (DBPL), Lecture Notes in Computer Science, vol. 1369, pp. 38–59. Springer, Berlin (1998)

    Google Scholar 

  8. Grumbach, S., Rigaux, P., Segoufin, L.: The DEDALE system for complex spatial queries. In: Proceedings of the 23th ACM International Conference on Management of Data (SIGMOD), pp. 213–224. ACM Press (1998)

    Google Scholar 

  9. Grumbach, S., Su, J., Tollu, C.: Linear constraint query languages: expressive power and complexity. In: Leivant, D. (ed.) Logic and Computational Complexity. Lecture Notes in Computer Science, vol. 960, pp. 426–446, Springer-Verlag, Heidelberg (1995)

    Chapter  Google Scholar 

  10. Haesevoets, S.: Modelling and Querying Spatio‐temporal Data. PhD thesis, Limburgs Universitair Centrum (2005)

    Google Scholar 

  11. Kanellakis, P.C., Kuper, G., Revesz, P.Z.: Constraint query languages. J. Comp. Syst. Sci. 51, 26–52 (1995)

    Article  MathSciNet  Google Scholar 

  12. Kuper, G.M., Libkin, L., Paredaens, J. (eds.) Constraint Databases. Springer-Verlag, Heidelberg (2000)

    MATH  Google Scholar 

  13. Paredaens, J., Van den Bussche, J., Van Gucht, D.: First-order queries on finite structures over the reals. SIAM J. Comp. 27(6), 1747–1763 (1998)

    Article  MATH  Google Scholar 

  14. Paredaens, J., Van den Bussche, J., Van Gucht, D.: Towards a theory of spatial database queries. In: Proceedings of the 13th ACM Symposium on Principles of Database Systems, pp. 279–288 (1994)

    Google Scholar 

  15. Revesz, R.Z.: Introduction to Constraint Databases. Springer-Verlag, Heidelberg (2002)

    MATH  Google Scholar 

  16. Rigaux, Ph., Scholl, M., Voisard, A.: Introduction to Spatial Databases: Applications to GIS. Morgan Kaufmann, (2000)

    Google Scholar 

  17. Tarski, A.: A Decision Method for Elementary Algebra and Geometry. University of California Press, Berkeley (1948)

    MATH  Google Scholar 

  18. Vandeurzen, L.: Logic-Based Query Languages for the Linear Constraint Database Model. PhD thesis, Limburgs Universitair Centrum (1999)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag

About this entry

Cite this entry

Kuijpers, B. (2008). Linear Versus Polynomial Constraint Databases. In: Shekhar, S., Xiong, H. (eds) Encyclopedia of GIS. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-35973-1_696

Download citation

Publish with us

Policies and ethics