Skip to main content

Polar Ice Dynamics

  • Reference work entry
  • First Online:
Encyclopedia of Remote Sensing

Part of the book series: Encyclopedia of Earth Sciences Series ((EESS))

  • 214 Accesses

Synonyms

Glacier motion; Ice drift; Ice rheology; Ice sheet motion; Ice transport; Sea ice motion

Definition

Polar ice. Ice cover found in the polar regions, with “polar” typically defined as locations north or south of the Arctic and Antarctic Circles, respectively (latitudes of 66.56083 °N and 66.56083 °S). The definition includes ice that forms on the oceans (sea ice), glaciers, and ice sheets.

Ice dynamics. Motion of ice cover, including large-scale patterns of ice transport, fine-scale movement of ice floes, and the interactions of ice and forcings such as winds and ocean currents.

Introduction

To many, the “polar ice caps” are viewed as areas of permanent, relatively static, and stable ice cover. In fact, all areas of ice on the oceans and land move at different rates, ranging from the relatively fast transport of sea ice of typically between 5 and 20 km/day (e.g., Emery et al., 1997; Heil and Allison, 1999) to the movement of glaciers and ice sheets (as much as 30 m/day for the...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 329.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Bibliography

  • Abdalati, W., and Krabill, W. B., 1999. Calculation of ice velocities in the Jakobshavn Isbrae area using airborne laser altimetry. Remote Sensing of Environment, 67, 194–204.

    Google Scholar 

  • Agnew, T., Le, H., and Hirose, T., 1997. Estimation of large scale sea ice motion from SSMI 85.5 GHz imagery. Annals of Glaciology, 24, 305–311.

    Google Scholar 

  • Bindschadler, R. A., and Scambos, T. A., 1991. Satellite-image-derived velocity field of an Antarctic ice stream. Science, 252, 242–252.

    Google Scholar 

  • Carsey, F. (ed.), 1992. Microwave Remote Sensing of Sea Ice. Washington, DC: American Geophysical Union, pp. 47–71.

    Google Scholar 

  • Dammert, P. B. G., Lepparanta, M., and Askne, J., 1998. SAR interferometry over Baltic Sea ice. International Journal of Remote Sensing, 19(16), 3019–3037, doi:10.1080/014311698214163.

    Article  Google Scholar 

  • Dietrich, R., Metzig, R., Korth, W., and Perlt, J., 2007. Combined use of field observations and SAR interferometry to study ice dynamics and mass balance in Dronning Maud Land, Antarctic. Polar Research, 18(2), 291–298.

    Google Scholar 

  • Dowdeswell, J. A., and Benham, T. J., 2006. A surge of Perseibreen, Svalbard, examined using aerial photography and ASTER high resolution satellite imagery. Polar Research, 22(2), 373–383.

    Google Scholar 

  • Emery, W. J., Fowler, C. W., and Maslanik, J. A., 1997. Satellite derived Arctic and Antarctic sea ice motions: 1988–1994. Geophysical Research Letters, 24(8), 897–900.

    Google Scholar 

  • Feltham, D. L., 2008. Sea ice rheology. Annual Review of Fluid Mechanics, doi:10.1146/annurev.fluid.40.111406.1021514091-4112.

    Article  Google Scholar 

  • Fily, M., and Rothrock, D. A., 1987. Sea ice tracking by nested correlations. IEEE Transactions on Geoscience and Remote Sensing, GE-25(5), 570–580.

    Google Scholar 

  • Goldstein, R. M., Engelhardt, H., Kamb, B., and Frolich, R. M., 1993. Satellite radar interferometry for monitoring ice sheet motion: application to an Antarctic ice stream. Science, 262, 1525–1530.

    Google Scholar 

  • Gutierrez, S., and Long, D. G., 2003. Optical flow and scale-space theory applied to sea-ice motion estimation in Antarctica. In Geoscience and Remote Sensing Symposium, 2003. IGARSS’03. Proceedings 2003 IEEE International, Toulouse, Vol. 4, pp. 2805–2807.

    Google Scholar 

  • Haarpaintner, J., 2006. Arctic-wide operational sea ice drift from enhanced-resolution QuikSCAT/SeaWinds scatterometry and its validation. IEEE Transactions on Geoscience and Remote Sensing, 44(1), 102–107.

    Google Scholar 

  • Haarpaintner, J., and Spreen, G., 2007. Use of enhanced-resolution QuikSCAT/SeaWinds data for operational ice services and climate research: sea ice edge, type, concentration, and drift. IEEE Transactions on Geoscience and Remote Sensing, 45(10), 3131–3137.

    Google Scholar 

  • Haarpaintner, J., Kergomard, C., Gascard, J. -C., and Haugen, P. M., 2000. Sea ice dynamics observed by ERS-2 SAR imagery and ARGOS buoys in Storfjorden, Svalbard. In Geoscience and Remote Sensing Symposium, 2000. Proceedings IGARSS 2000. IEEE 2000 International, Hawaii, Vol. 2, pp. 467–469.

    Google Scholar 

  • Heil, P., and Allison, I., 1999. The pattern and variability of Antarctic sea-ice drift in the Indian Ocean and western Pacific sectors. Journal of Geophysical Research, 104(C7), 15789–15802.

    Google Scholar 

  • Holt, B., Rothrock, D., and Kwok, R., 1992. Determination of sea ice motion from satellite images. In Carsey, F. (ed.), Microwave Remote Sensing of Sea Ice. Washington, DC: American Geophysical Union. Geophysical Monograph, Vol. 68, pp. 343–354.

    Google Scholar 

  • Joughin, I., Kwok, R., and Fahnestock, M., 1996. Estimation of ice-sheet motion using satellite radar interferometry – method and error analysis with application to Humboldt glacier, Greenland. Journal of Glaciology, 42(142), 564–575.

    Google Scholar 

  • Joughin, I., Abdalati, W., and Fahnestock, M., 2004. Large fluctuations in speed on Greenland’s Jakobshavn Isbrae glacier. Nature, 432, 608–610.

    Google Scholar 

  • Kaab, A., Lefauconnier, B., and Melvold, K., 2005. Flow field of Kronebreen, Svalbard, using repeated Landsat 7 and ASTER data. Annals of Glaciology, 42, 7–13.

    Google Scholar 

  • Kwok, R., 2008. Summer sea ice motion from the 18 GHz channel of AMSR-E and the exchange of sea ice between the Pacific and Atlantic sectors. Geophysical Research Letters, 35, L03504, doi:10.1029/2007GL032692.

    Article  Google Scholar 

  • Kwok, R., and Fahnestock, M. A., 1996. Ice sheet motion and topography from radar interferometry. IEEE Transactions on Geoscience and Remote Sensing, 34(1), 189–200.

    Google Scholar 

  • Kwok, R., Curlander, J. C., McConnell, R., and Pang, S. S., 1990. An ice-motion tracking system at the Alaska SAR facility. IEEE Journal of Oceanic Engineering, 15(1), 44–53.

    Google Scholar 

  • Kwok, R., Schweiger, A., Rothrock, D. A., Pang, S., and Kottmeier, C., 1998. Sea ice motion from satellite passive microwave imagery assessed with ERS SAR and buoy motions. Journal of Geophysical Research, 103(C4), 8191–8214.

    Google Scholar 

  • Kwok, R., Cunningham, G. F., and Hibler, W. D., III, 2003. Subdaily ice motion and deformation from RADARSAT observations. Geophysical Research Letters, 30(23), 2218, doi:10.1029/2003GL018723.

    Article  Google Scholar 

  • Leppäranta, M., 2004. The Drift of Sea Ice. Berlin: Springer, p. 266. 9783540408819. ISBN 3540408819.

    Google Scholar 

  • Liu, A., and Cavalieri, D. J., 1998. On sea ice drift from the wavelet analysis of DMSP SSM/I data. International Journal of Remote Sensing, 19(7), 1415–1423.

    Google Scholar 

  • Liu, A. K., Zhao, Y., and Wu, S. Y., 1999. Arctic sea ice drift from wavelet analysis of NSCAT and special sensor microwave imager data. Journal of Geophysical Research, 104(C5), 11,529–11,538.

    Google Scholar 

  • Lubin, D., and Massom, R., 2006. Polar Remote Sensing: Atmosphere and Oceans. Berlin: Springer, p. 756.

    Google Scholar 

  • Lucchitta, B. K., and Ferguson, H. M., 1986. Antarctica: measuring glacier velocity from satellite images. Science, 234(4780), 1105–1108.

    Google Scholar 

  • Luckman, A., Quincey, D., and Bevan, S., 2007. The potential of satellite radar interferometry and feature tracking for monitoring flow rates of Himalayan glaciers. Remote Sensing of Environment, 111, 172–181.

    Google Scholar 

  • Maslanik, J. A., and Barry, R. G., 1990. Remote sensing in Antarctica and the southern ocean: applications and developments. Antarctic Science, 2(2), 105–121.

    Google Scholar 

  • Maslanik, J. A., Fowler, C., Stroeve, J., Drobit, S., Zwally, J., Yi, D., and Emery, W., 2007. A younger, thinner Arctic ice cover: increased potential for rapid, extensive sea-ice loss. Geophysical Research Letters, 34, L24501, doi:10.1029/2007GL032043.

    Article  Google Scholar 

  • McNutt, S. L., and Overland, J. E., 2003. Understanding the spatial hierarchy in Arctic sea ice dynamics. Tellus A, 55(2), 181–191.

    Google Scholar 

  • Meier, W. N., Maslanik, J. A., Key, J. R., and Fowler, C. W. W., 1997. Multiparameter AVHRR-derived products for Arctic climate studies. Earth Interactions, 1(5), 1–29.

    Google Scholar 

  • Ninnis, R. N., Emery, W. J., and Collins, M. J., 1986. Automated extraction of sea ice motion from AVHRR imagery. Journal of Geophysical Research, 91, 10725–10734.

    Google Scholar 

  • Pritchard, H. T., Murray, A., Luckman, T. S., and Barr, S., 2005. Glacier surge dynamics of Sortebrae, east Greenland, from synthetic aperture radar feature tracking. Journal of Geophysical Research, 110, F03005, doi:10.1029/2004F000233.

    Article  Google Scholar 

  • Rignot, E., and Kanagaratnam, P., 2006. Changes in the velocity structure of the Greenland ice sheet. Science, 311(5763), 986–990.

    Google Scholar 

  • Rignot, E., Braaten, D., Gogineni, S. P., Krabill, W. B., and McConnell, J. R., 2004. Rapid ice discharge from southeast Greenland glaciers. Geophysical Research Letters, 31(10), 1–4.

    Google Scholar 

  • Scambos, T. A., Dutkiewicz, M. J., Wilson, J. C., and Bindschadler, R. A., 1992. Application of image cross-correlation to the measurement of glacier velocity using satellite image data. Remote Sensing of Environment, 42, 177–186.

    Google Scholar 

  • Smith, L. C., 2002. Emerging applications of interferometric synthetic aperture radar (InSAR) in geomorphology and hydrology. Annals of the Association of American Geographers, 92(3), 385–398.

    Google Scholar 

  • Thomas, M., Geiger, C., and Kambhamettu, C., 2004. Discontinuous non-rigid motion analysis of sea ice using C-band synthetic aperture radar satellite imagery. In Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops, CVPRW’04. Washington, DC: IEEE Computer Society, pp. 1063–6919/04.

    Google Scholar 

  • Zhao, Y., and Liu, A. K., 2007. Arctic sea-ice motion and its relation to pressure field. Journal of Oceanography, 63(3), 505–515, doi:10.1007/s10872-007-0045-2.

    Article  Google Scholar 

  • Zhao, Y., Liu, A. K., and Long, D. G., 2002. Validation of sea ice motion from QuikSCAT with those from SSM/I and buoy. IEEE Transactions on Geoscience and Remote Sensing, 40(6), 1241–1246.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James Maslanik .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this entry

Cite this entry

Maslanik, J. (2014). Polar Ice Dynamics. In: Njoku, E.G. (eds) Encyclopedia of Remote Sensing. Encyclopedia of Earth Sciences Series. Springer, New York, NY. https://doi.org/10.1007/978-0-387-36699-9_128

Download citation

Publish with us

Policies and ethics