Skip to main content

Sea Surface Temperature

  • Reference work entry
  • First Online:
Encyclopedia of Remote Sensing

Part of the book series: Encyclopedia of Earth Sciences Series ((EESS))

Definition

Historically, sea surface temperature (SST) has been measured by mercury-in-glass thermometers in buckets containing seawater collected by lowering them from ships and, in recent decades, thermistors on buoys or in the engine cooling water intakes of ships. These thermometers measure a temperature at depths of tens of centimeters to a few meters, a temperature often referred to as the “bulk” SST. Recently it has become accepted that it is better to include the depth of the measurement as vertical gradients can exist in the top few meters of the water column. The remotely sensed measurements of SST from satellite infrared radiometers are of a temperature very close to the sea surface, often referred to as the skin temperature. The skin temperature is close to the temperature of the ocean that is in contact with the atmosphere and, as such, is an important parameter that controls the heat and gas transfers between the ocean and atmosphere.

Near-surface temperature gradients

The...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 329.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Bibliography

  • Allen, M. R., Mutlow, C. T., Blumberg, G. M. C., Christy, J. R., McNider, R. T., and Llewellyn-Jones, D. T., 1994. Global change detection. Nature, 370, 24–25.

    Google Scholar 

  • Barton, I. J., Minnett, P. J., Donlon, C. J., Hook, S. J., Jessup, A. T., Maillet, K. A., and Nightingale, T. J., 2004. The Miami 2001 infrared radiometer calibration and inter-comparison: 2. Ship comparisons. Journal of Atmospheric and Oceanic Technology, 21, 268–283.

    Google Scholar 

  • Blackmore, T., O’Carroll, A., Fennig, K., and Saunders, R., 2012. Correction of AVHRR Pathfinder SST data for volcanic aerosol effects using ATSR SSTs and TOMS aerosol optical depth. Remote Sensing of Environment, 116, 107–117.

    Google Scholar 

  • Coppo, P., Ricciarelli, B., Brandani, F., Delderfield, J., Ferlet, M., Mutlow, C., Munro, G., Nightingale, T., Smith, D., Bianchi, S., Nicol, P., Kirschstein, S., Hennig, T., Engel, W., Frerick, J., and Nieke, J., 2010. SLSTR: a high accuracy dual scan temperature radiometer for sea and land surface monitoring from space. Journal of Modern Optics, 57, 1815–1830.

    Google Scholar 

  • Cracknell, A. P., 1997. The Advanced Very High Resolution Radiometer. London: Taylor and Francis.

    Google Scholar 

  • Donlon, C. J., Minnett, P. J., Gentemann, C., Nightingale, T. J., Barton, I. J., Ward, B., and Murray, J., 2002. Toward improved validation of satellite sea surface skin temperature measurements for climate research. Journal of Climate, 15, 353–369.

    Google Scholar 

  • Donlon, C., Robinson, I., Casey, K. S., Vazquez-Cuervo, J., Armstrong, E., Arino, O., Gentemann, C., May, D., LeBorgne, P., Piollé, J., Barton, I., Beggs, H., Poulter, D. J. S., Merchant, C. J., Bingham, A., Heinz, S., Harris, A., Wick, G., Emery, B., Minnett, P., Evans, R., Llewellyn-Jones, D., Mutlow, C., Reynolds, R. W., Kawamura, H., and Rayner, N., 2007. The global ocean data assimilation experiment high-resolution sea surface temperature pilot project. Bulletin of the American Meteorological Society, 88, 1197–1213.

    Google Scholar 

  • Donlon, C., Berruti, B., Buongiorno, A., Ferreira, M. H., Féménias, P., Frerick, J., Goryl, P., Klein, U., Laur, H., Mavrocordatos, C., Nieke, J., Rebhan, H., Seitz, B., Stroede, J., and Sciarra, R., 2012. The global monitoring for environment and security (GMES) sentinel-3 mission. Remote Sensing of Environment, 120, 37–57.

    Google Scholar 

  • Esaias, W. E., Abbott, M. R., Barton, I., Brown, O. B., Campbell, J. W., Carder, K. L., Clark, D. K., Evans, R. H., Hoge, F. E., Gordon, H. R., Balch, W. M., Letelier, R., and Minnett, P. J., 1998. An overview of MODIS capabilities for ocean science observations. IEEE Transactions on Geosciences and Remote Sensing, 36, 1250–1265.

    Google Scholar 

  • Gentemann, C. L., and Minnett, P. J., 2008. Radiometric measurements of ocean surface thermal variability. Journal of Geophysical Research, 113, C08017. doi:10.1029/2007JC004540.

    Google Scholar 

  • Gentemann, C. L., Wentz, F. J., Mears, C. A., and Smith, D. K., 2004. In situ validation of Tropical Rainfall Measuring Mission microwave sea surface temperatures. Journal of Geophysical Research, 109, C04021. doi:10.1029/2003JC002092.

    Google Scholar 

  • Gentemann, C. L., Minnett, P. J., LeBorgne, P., and Merchant, C. J., 2008. Multi-satellite measurements of large diurnal warming events. Geophysical Research Letters, 35, L22602.

    Google Scholar 

  • Good, S. A., Corlett, G. K., Remedios, J. J., Noyes, E. J., and Llewellyn-Jones, D. T., 2007. The global trend in sea surface temperature from 20 years of advanced very high resolution radiometer data. Journal of Climate, 20, 1255–1264.

    Google Scholar 

  • Kawanishi, T., Sezai, T., Ito, Y., Imaoka, K., Takeshima, T., Ishido, Y., Shibata, A., Miura, M., Inahata, H., and Spencer, R. W., 2003. The advanced microwave scanning radiometer for the earth observing system (AMSR-E), NASDA’s contribution to the EOS for global energy and water cycle studies. Geoscience and Remote Sensing, IEEE Transactions on, 41, 184–194.

    Google Scholar 

  • Kearns, E. J., Hanafin, J. A., Evans, R. H., Minnett, P. J., and Brown, O. B., 2000. An independent assessment of Pathfinder AVHRR sea surface temperature accuracy using the Marine-Atmosphere Emitted Radiance Interferometer (M-AERI). Bulletin of the American Meteorological Society, 81, 1525–1536.

    Google Scholar 

  • Kilpatrick, K. A., Podestá, G. P., and Evans, R. H., 2001. Overview of the NOAA/NASA Pathfinder algorithm for sea surface temperature and associated matchup database. Journal of Geophysical Research, 106, 9179–9198.

    Google Scholar 

  • Kummerow, C., Barnes, W., Kozu, T., Shiue, J., and Simpson, J., 1998. The tropical rainfall measuring mission (TRMM) sensor package. Journal of Atmospheric and Oceanic Technology, 15, 809–817.

    Google Scholar 

  • Llewellyn-Jones, D. T., Minnett, P. J., Saunders, R. W., and Závody, A. M., 1984. Satellite multichannel infrared measurements of sea-surface temperature of the N.E. Atlantic ocean using AVHRR/2. Quarterly Journal of the Royal Meteorological Society, 110, 613–631.

    Google Scholar 

  • May, D. A., Parmeter, M. M., Olszewski, D. S., and McKenzie, B. D., 1998. Operational processing of satellite sea surface temperature retrievals at the naval oceanographic office. Bulletin of the American Meteorological Society, 79, 397–407.

    Google Scholar 

  • Merchant, C. J., and LeBorgne, P., 2004. Retrieval of sea surface temperature from space, based on modeling of infrared radiative transfer: capabilities and limitations. Journal of Atmospheric and Oceanic Technology, 21, 1734–1746.

    Google Scholar 

  • Merchant, C. J., Harris, A. R., Maturi, E., and MacCallum, S., 2005. Probabilistic physically based cloud screening of satellite infrared imagery for operational sea surface temperature retrieval. Quarterly Journal of the Royal Meteorological Society, 131, 2735–2755.

    Google Scholar 

  • Merchant, C.J., Harris, A.R., Roquet, H., & Le Borgne, P., 2009. Retrieval characteristics of non-linear sea surface temperature from the Advanced Very High Resolution Radiometer. Geophysical Research Letters, 36, L17604. doi:10.1029/2009GL039843.

    Google Scholar 

  • Minnett, P. J., 1995. The along-track scanning radiometer: instrument details. In Ikeda, M., and Dobson, F. (eds.), Oceanographic Applications of Remote Sensing. Boca Raton: CRC Press, pp. 461–472.

    Google Scholar 

  • Minnett, P. J., 2007. Heat in the ocean. In King, M. D., Parkinson, C. L., Partington, K. C., and Williams, R. G. (eds.), Our Changing Planet, the View from Space. Cambridge: Cambridge Univesity Press, pp. 156–161.

    Google Scholar 

  • Minnett, P. J., Smith, M., and Ward, B., 2011. Measurements of the oceanic thermal skin effect. Deep Sea Research Part II: Topical Studies in Oceanography, 58, 861–868.

    Google Scholar 

  • Noyes, E. J., Minnett, P. J., Remedios, J. J., Corlett, G. K., Good, S. A., and Llewellyn-Jones, D. T., 2006. The accuracy of the AATSR sea surface temperatures in the Caribbean. Remote Sensing of Environment, 101, 38–51.

    Google Scholar 

  • O’Carroll, A. G., Eyre, J. R., and Saunders, R. W., 2008. Three-way error analysis between AATSR, AMSR-E, and in situ sea surface temperature observations. Journal of Atmospheric and Oceanic Technology, 25, 1197–1207.

    Google Scholar 

  • Philander, S. G. (ed.), 1989. El Niño, La Niña, and the Southern Oscillation. San Diego: Academic. International Geophysics Series.

    Google Scholar 

  • Prata, A. J. F., Cechet, R. P., Barton, I. J., and Llewellyn-Jones, D. T., 1990. The along-track scanning radiometer for ERS-1 – scan geometry and data simulation. IEEE Transactions on Geoscience and Remote Sensing, 28, 3–13.

    Google Scholar 

  • Reynolds, R. W., 1993. Impact of Mount Pinatubo aerosols on satellite-derived sea surface temperature. Journal of Climate, 6, 768–774.

    Google Scholar 

  • Saunders, R. W., and Kriebel, K. T., 1988. An improved method for detecting clear sky and cloudy radiances from AVHRR data. International Journal of Remote Sensing, 9, 123–150. Correction, 1988, International Journal of Remote Sensing, 9, 1393–1394.

    Google Scholar 

  • Shay, L. K., Goni, G. J., and Black, P. G., 2000. Effects of a warm oceanic feature on Hurricane Opal. Monthly Weather Review, 128, 1366–1383.

    Google Scholar 

  • Walton, C. C., Pichel, W. G., Sapper, J. F., and May, D. A., 1998. The development and operational application of nonlinear algorithms for the measurement of sea surface temperatures with the NOAA polar-orbiting environmental satellites. Journal of Geophysical Research, 103, 27999–28012.

    Google Scholar 

  • Wentz, F. J., and Meissner, T., 2000. AMSR Ocean Algorithm (ATBD), Version 2. Santa Rosa: Remote Sensing Systems.

    Google Scholar 

  • Wentz, F. J., Gentemann, C., Smith, D., and Chelton, D., 2000. Satellite measurements of sea-surface temperature through clouds. Science, 288, 847–850.

    Google Scholar 

  • Wentz, F., Gentemann, C. L., and Ashcroft P., 2003. On-orbit calibration of AMSR-E and the retrieval of ocean products. In 12th Conference on Satellite Meteorology and Oceanography, American Meteorological Society, Long Beach.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this entry

Cite this entry

Minnett, P.J. (2014). Sea Surface Temperature. In: Njoku, E.G. (eds) Encyclopedia of Remote Sensing. Encyclopedia of Earth Sciences Series. Springer, New York, NY. https://doi.org/10.1007/978-0-387-36699-9_166

Download citation

Publish with us

Policies and ethics