Definition
Snow. Low-density ice particles. The density is typically in the order of 0.1 g/cm3. Individual snowflakes can exhibit a wide variety of different forms. Other frozen particles include graupel or hail. Graupel particles are medium-density ice particles with a density of about 0.4 g/m2. Graupel is produced when ice particles fall through extensive layers of supercooled cloud liquid water. Hail particles are of a very high density of about 0.9 g/m2. Hail fall is associated with intensive convection and is formed via a series of melting and refreezing processes.
Melting layer. The melting layer is the layer in which falling hydrometeors transition from the ice into the liquid phase. The top of the melting layer coincides with the 0° C isothermal.
Bright band. The bright band is a band of enhanced radar reflectivity associated with melting precipitation particles. It is typically found in stratiform precipitation. The bright band roughly coincides with the melting layer.
Introduction...
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Bibliography
Bennartz, R., 2007. Passive microwave remote sensing of precipitation at high latitudes. In Levizzian, V., Levizziani, V., Turk, J., and Bauer, P. (eds.), Measuring Precipitation from Space – EURAINSAT and the Future. Dordrecht: Springer, pp. 165–178. 745 p. ISBN ISBN 978-1-4020-5834-9.
Fabry, F., and Zawadzki, T., 1995. Long-term radar observations of the melting layer of precipitation and their interpretation. Journal of the Atmospheric Sciences, 52, 838–851.
Gunn, K. L. S., and Marshall, J. S., 1958. The distribution with size of aggregate snowflakes. Journal of Meteorology, 15, 452–461.
Hiley, M., Kulie, M., and Bennartz, R., 2010. Uncertainty analysis for CloudSat snowfall retrievals. Journal of Applied Meteorology and Climatology, 50(2), 399–418.
Hong, G., 2007. Radar backscattering properties of nonspherical ice crystals at 94 GHz. Journal of Geophysical Research-Atmospheres, 112, D22203, doi:10.1029/2007jd008839.
Kim, M. J., 2006. Single scattering parameters of randomly oriented snow particles at microwave frequencies. Journal of Geophysical Research-Atmospheres, 111, D14201, doi:10.1029/2005jd006892.
Kim, M. J., Weinman, J. A., Olson, W. S., Chang, D. E., Skofronick-Jackson, G., and Wang, J. R., 2008. A physical model to estimate snowfall over land using AMSU-B observations. Journal of Geophysical Research-Atmospheres, 113, D09201, doi:10.1029/2007jd008589.
Kulie, M. S., and Bennartz, R., 2009. Utilizing spaceborne radars to retrieve dry snowfall. Journal of Applied Meteorology and Climatology, 48, 2564–2580, doi:10.1175/2009jamc2193.1.
Liu, G. S., 2004. Approximation of single scattering properties of ice and snow particles for high microwave frequencies. Journal of the Atmospheric Sciences, 61, 2441–2456.
Liu, G. S., 2008. Deriving snow cloud characteristics from CloudSat observations. Journal of Geophysical Research-Atmospheres, 113, D00A09, doi:10.1029/2007JD009766.
Matrosov, S. Y., 2007. Modeling backscatter properties of snowfall at millimeter wavelengths. Journal of the Atmospheric Sciences, 64, 1727–1736, doi:10.1175/jas3904.1.
Matrosov, S. Y., Clark, K. A., and Kingsmill, D. E., 2007. A polarimetric radar approach to identify rain, melting-layer, and snow regions for applying corrections to vertical profiles of reflectivity. Journal of Applied Meteorology and Climatology, 46, 154–166.
Matrosov, S. Y., Campbell, C., Kingsmill, D., and Sukovich, E., 2009. Assessing snowfall rates from X-band radar reflectivity measurements. Journal of Atmospheric and Oceanic Technology, 26, 2324–2339, doi:10.1175/2009jtecha1238.1.
Noh, Y. J., Liu, G. S., Seo, E. K., Wang, J. R., and Aonashi, K., 2006. Development of a snowfall retrieval algorithm at high microwave frequencies. Journal of Geophysical Research-Atmospheres, 111, D22216, doi:10.1029/2005jd006826.
Noh, Y. J., Liu, G. S., Jones, A. S., and Haar, T. H. V., 2009. Toward snowfall retrieval over land by combining satellite and in situ measurements. Journal of Geophysical Research-Atmospheres, 114, D24205, doi:10.1029/2009jd012307.
Petty, G. W., and Huang, W., 2010. Microwave backscatter and extinction by soft ice spheres and complex snow aggregates. Journal of the Atmospheric Sciences, 67, 769–787, doi:10.1175/2009jas3146.1.
Sekhon, R. S., and Srivasta, R. C., 1970. Snow size spectra and radar reflectivity. Journal of the Atmospheric Sciences, 27, 299–307.
Skofronick-Jackson, G. M., Kim, M. J., Weinman, J. A., and Chang, D. E., 2004. A physical model to determine snowfall over land by microwave radiometry. IEEE Transactions on Geoscience and Remote Sensing, 42, 1047–1058.
Stephens, G. L., Vane, D. G., Tanelli, S., Im, E., Durden, S., Rokey, M., Reinke, D., Partain, P., Mace, G. G., Austin, R., L’Ecuyer, T., Haynes, J., Lebsock, M., Suzuki, K., Waliser, D., Wu, D., Kay, J., Gettelman, A., Wang, Z., and Marchand, R., 2008. CloudSat mission: performance and early science after the first year of operation. Journal of Geophysical Research-Atmospheres, 113, D00A18, doi:10.1029/2008jd009982.
Zrnic, D. S., Balakrishnan, N., Ziegler, C. L., Bringi, V. N., Aydin, K., and Matejka, T., 1993. Polarimetric signatures in the stratiform region of a mesoscale convective system. Journal of Applied Meteorology, 32, 678–693.
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2014 Springer Science+Business Media New York
About this entry
Cite this entry
Bennartz, R. (2014). Snowfall. In: Njoku, E.G. (eds) Encyclopedia of Remote Sensing. Encyclopedia of Earth Sciences Series. Springer, New York, NY. https://doi.org/10.1007/978-0-387-36699-9_172
Download citation
DOI: https://doi.org/10.1007/978-0-387-36699-9_172
Published:
Publisher Name: Springer, New York, NY
Print ISBN: 978-0-387-36698-2
Online ISBN: 978-0-387-36699-9
eBook Packages: Earth and Environmental ScienceReference Module Physical and Materials ScienceReference Module Earth and Environmental Sciences