Skip to main content

Surface Radiative Fluxes

  • Reference work entry
  • First Online:
Encyclopedia of Remote Sensing

Part of the book series: Encyclopedia of Earth Sciences Series ((EESS))

Synonyms

Remote sensing of surface radiative fluxes; Shortwave and longwave surface radiative fluxes

Definition

Radiative fluxes. Electromagnetic radiation received from the sun (shortwave) (SW) or emitted from the atmosphere and/or the Earth surface (longwave) (LW).

Surface radiative fluxes. Electromagnetic radiation received at the surface of the Earth (ocean, land, and cryosphere) in the shortwave or longwave part of the spectrum.

Surface radiation balance. The sum of the incoming and outgoing shortwave and longwave radiative fluxes at the surface.

Remote sensing of radiative fluxes. Sensing of radiative fluxes by instruments away from the source of radiation such as satellites or aircraft.

Introduction

Components of surface radiative fluxes

Solar radiation (insolation or shortwave radiation)from the sun (0.3–4.0 μm) that reaches the Earth’s surface (about 50 % of that emitted) is a major source of energy for heating our planet. At the mean distance of the Earth from the sun (1.50...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 329.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Bibliography

  • Augustine, J. A., DeLuisi, J. J., and Long, C. N., 2000. SURFRAD-A national surface radiation budget network for atmospheric research. Bulletin of the American Meteorological Society, 81, 2341–2357.

    Google Scholar 

  • Bourle`s, B., et al., 2008. The Pirata Program: history, accomplishments, and future directions. Bulletin of the American Meteorological Society, 89, 1111–1125.

    Google Scholar 

  • Breon, F. M., Buriez, J. C., Couvert, P., et al., 2002. Earth’s atmosphere, ocean and surface studies, Book series: Advances in Space, 30(11), 2383–2386. Article Number: PII S0273-1177(02)00078-9, doi:10.1016/S0273-1177(02)80282-4.

    Google Scholar 

  • Brisson, A., Le Borgne, P., Marsouin, A., and Moreau, T., 1994. Surface irradiance calculated from Meteosat sensor data during SOFIA-ASTEX. International Journal of Remote Sensing, 15, 197–203.

    Google Scholar 

  • Budyko, M. I., 1958. The heat balance of the earth’s surface. Washington, DC: Dept. of Commerce, Weather Bureau, 1958 – Earth temperature, pp. 259.

    Google Scholar 

  • Ceballos, J. C., Bottino, M. J., and de Souza, J. M., 2004. A simplified physical model for assessing solar radiation over Brazil using GOES 8 visible imagery, Journal of Geophysical Research: Atmospheres, 109(D2), Art. No. D02211.

    Google Scholar 

  • Cess, R. D., Zhang, M. H., Potter, G. L., Alekseev, V., Barker, H. W., Bony, S., Colman, R. A., Dazlich, D. A., DelGenio, A. D., Deque, M., Dix, M. R., Dymnikov, V., Esch, M., Fowler, L. D., Fraser, J. R., Galin, V., Gates, W. L., Hack, J. J., Ingram, W. J., Kiehl, J. T., Kim, Y., LeTreut, H., Liang, X. Z., McAvaney, B. J., Meleshko, V. P., Morcrette, J. J., Randall, D. A., Roeckner, E., Schlesinger, M. E., Sporyshev, P. V., Taylor, K. E., Timbal, B., Volodin, E. M., Wang, W., Wang, W. C., and Wetherald, R. T., 1997. Comparison of the seasonal change in cloud-radiative forcing from atmospheric general circulation models and satellite observations. Journal of Geophysical Research, 102, 16593–16603.

    Google Scholar 

  • Charlock, T. P., Rose, F. G., Rutan, D. A., Jin, Z., and Kato, S., 2006. The global surface and atmospheric radiation budget: An assessment of accuracy with 5 years of calculations and observations. In Proceedings 12th Conference on Atmos. Radiation, Madison, WI, July 10–14.

    Google Scholar 

  • Chou, M. D., Ridgway, W. L., and Yan, M. M. H., 1995. Parameterizations for water vapor IR radiative transfer in both the middle and lower atmospheres. Journal of the Atmospheric Sciences, 52(8), 1159–1167, doi:10.1175/1520.

    Article  Google Scholar 

  • Dilley, A. C., and O’Brien, D. M., 1998. Estimating downward clear sky long-wave irradiance at the surface from screen temperature and precipitable water. Quarterly Journal of the Royal Meteorological Society, 124, 1391–1401.

    Google Scholar 

  • Frouin, R., and Pinker, R. T., 1995. Estimating Photosynthetically Active Radiation (PAR) at the Earth’s surface from satellite observations. Remote Sensing of Environment, 51.

    Google Scholar 

  • Gupta, S. K., Ritchey, N. A., Wilber, A. C., Whitlock, C. H., Gibson, G. G., and Stackhouse, P. W. Jr., 1999. A climatology of surface radiation budget derived from satellite data. Journal of Climate, 12(8), 2691–2710, Part 2.

    Google Scholar 

  • Gupta, S. K., Kratz, D. P., Stackhouse, P. W., Jr., Wilber, A. C., Zhang, T., and Sothcott, V. E., 2010. Improvement of surface longwave flux algorithms used in CERES processing. Journal of Applied Meteorology and Climatology, 49(7), 1579–1589, doi:10.1175/2010JAMC2463.1.

    Article  Google Scholar 

  • Hansen, J. E., et al., 2005. Earth’s energy imbalance: confirmation and implications. Science, 308, 1431–1435, doi:10.1126/science.1110252.

    Article  Google Scholar 

  • Harries, J. E., Russell, J. E., and Hanafin, J. A., et al., 2005. The geostationary Earth Radiation Budget Project. Bulletin of the American Meteorological Society, 86(7), doi:10.1175/BAMS-86-7-945.

    Article  Google Scholar 

  • Hollmann, R., Feng, J., Leighton, H. G., Mueller, J., and Stuhlmann, R., 1999. ScaRaB as a valuable tool for BALTEX and MAGS: Satellite applications for energy budgets and the hydrological cycle. Advances in Space Research, 4(7), 955–958.

    Google Scholar 

  • Intergovernmental Panel on Climate Change (IPCC), 2007. Climate change 2007: The physical science basis. Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change, edited by Solomon, S. et al. Cambridge, UK: Cambridge University Press.

    Google Scholar 

  • Kiehl, J. T., and Trenberth, K. E., 1997. Earth’s annual global mean energy budget. Bulletin of the American Meteorological Society, 78, 197–208, doi:10.1175/1520.

    Article  Google Scholar 

  • King, M. D., et al., 2003. Cloud and aerosol properties, perceptible water, and profiles of temperature and humidity from MODIS. IEEE Transactions on Geoscience and Remote Sensing, 41, 442–458, doi:10.1109/TGRS.2002.808226.

    Article  Google Scholar 

  • Kopp, G., and Lawrence, G., 2005. The Total Irradiance Monitor (TIM): instrument design. Solar Physics, 230, 1–2, doi:10.1007/s11207-005-7446-4.

    Article  Google Scholar 

  • Kopp, G., and Lean, J. L., 2011. A new, lower value of total solar irradiance: evidence and climate significance. Geophysical Research Letters, 38, L01706, doi:10.1029/2010GL045777.

    Article  Google Scholar 

  • Kopp, G., Lawrence, G., and Rottman, G., 2005. The Total Irradiance Monitor (TIM): science Results, Solar Physics, 230, 129–140.

    Google Scholar 

  • Li, Z., Leighton, H. G., Masuda, K., and Takashima, T., 1993. Estimation of SW flux absorbed at the surface from TOA reflected flux. Journal of Climate, 6, 317–330.

    Google Scholar 

  • List, R. J. (ed.), 1966. Smithsonian Meteorological Tables, 6th edn. Washington, DC: Smithsonian Institution.

    Google Scholar 

  • Loeb, N. G., Wielicki, B. A., Doelling, D. R., Smith, G. L., Keyes, D. F., Kato, S., Manalo‐Smith, N., and Wong, T., 2009. Toward optimal closure of the Earth’s top‐of‐atmosphere radiation budget. Journal of Climate, 22, 748–766, doi:10.1175/2008JCLI2637.1.

    Article  Google Scholar 

  • Ma, Y., and Pinker, R. T., 2012. Modeling shortwave radiative fluxes from satellites. Journal of Geophysical Research, 117, D23202, 1–19, doi:10.1029/2012JD018332.

    Google Scholar 

  • McPhaden, M. J., et al., 1998. The Tropical Ocean-Global Atmosphere observing system: a decade of progress. Journal of Geophysical Research, 103, 14,169–14,240.

    Google Scholar 

  • Menzel, W. P., and Purdom, J. F., 1994. Introducing GOES-I: the first of a new generation of geostationary operational environmental satellites. Bulletin of the American Meteorological Society, 75, 757–782.

    Google Scholar 

  • Michalsky, J., Dutton, E., Rubes, M., et al., 1999. Optimal measurement of surface shortwave irradiance using current instrumentation. Journal of Atmospheric and Oceanic Technology, 16(1), 55–69, doi:10.1175/1520-0426.

    Article  Google Scholar 

  • Niemela, S., Raisanen, P., and Savijarivi, H., 2001. Comparison of surface radiative flux parameterizations. Part I: longwave radiation. Atmospheric Research, 58, 1–18.

    Google Scholar 

  • Nussbaumer, E. A., and Pinker, R. T., 2011. Estimating surface long-wave radiative fluxes at global scale. Quarterly Journal of Royal Meteorological Society, 137, October 2011 A.

    Google Scholar 

  • Nussbaumer, E. A., and Pinker, R. T., 2012. Estimating surface longwave radiative fluxes from satellites utilizing artificial neural networks. Journal of Geophysical Research, 117, D07209, doi:10.1029/2011JD017141.

    Article  Google Scholar 

  • Ohmura, A., and Gilgen, H., 1993. Re-evaluation of the global energy balance. Geophysical Monograph, 75, IUGG, Vol. 15, pp 93–110.

    Google Scholar 

  • Ohmura, A., Dutton, E. G., Forgan, B., Frohlich, C., Gilgen, H., Hegner, H., Heimo, A., Konig-Langlo, G., McArthur, B., Muller, G., Philipona, R., Pinker, R. T., Whitlock, C. H., Dehne, K., and Wild, M., 1998. Baseline surface radiation network (BSRN/WCRP): new precision radiometry for climate research. Bulletin of the American Meteorological Society, 79, 2115–2136.

    Google Scholar 

  • Philipona, R., et al., 2001. Atmospheric longwave irradiance uncertainty: pyrgeometers compared to an absolute sky-scanning radiometer, atmospheric emitted radiance interferometer, and radiative transfer model calculations. Journal of Geophysical Research, 106, 28,129–28,141, doi:10.1029/2000JD000196.

    Article  Google Scholar 

  • Pinker, R. T., and Laszlo, I., 1992. Modeling surface solar irradiance for satellite applications on a global scale. Journal of Applied Meteorology, 31, 194–211.

    Google Scholar 

  • Pinker, R. T., Laszlo, I., Whitlock, C. H., and Charlock, T. P., 1995. Radiative flux opens new window on climate research. EOS, 76(15), 145–160.

    Google Scholar 

  • Pinker, R. T., Tarpley, J. D., Laszlo, I., Mitchell, K. E., Houser, P. R., Wood, E. F., Schaake, J. C., Robock, A., Lohmann, D., Cosgrove, B. A., Sheffield, J., Duan, Q., Luo, L., and Higgins, R. W., 2003. Surface radiation budgets in support of the GEWEX continental scale international project (GCIP) and the GEWEX Americas prediction project (GAPP), including the North American land data assimilation system (NLDAS). Journal of Geophysical Research-Atmospheres, 108(D22), Art. No. 8844 19 Nov 2003.

    Google Scholar 

  • Platnick, S., King, M. D., Ackerman, S. A., Menzel, W. P., Baum, B. A., Riedi, J. C., and Frey, R. A., 2003. The MODIS cloud products: algorithms and examples from Terra. IEEE Transactions on Geoscience and Remote Sensing, 41, 459–473.

    Google Scholar 

  • Prata, A. J., 1996. A new long-wave formula for estimating downward clear-sky radiation at the surface. Quarterly Journal of the Royal Meteorological Society, 122, 1127–1151.

    Google Scholar 

  • Rossow, W. B., and Lacis, A. A., 1990. Global, seasonal cloud variation from satellite radiance measurements, 2, Cloud properties and radiative effects. Journal of Climate, 3, 1204–1253.

    Google Scholar 

  • Rossow, W. B., and Schiffer, R. A., 1991. ISCCP cloud data products. Bulletin of the American Meteorological Society, 72(1), 2–20.

    Google Scholar 

  • Rossow, W. B., and Schiffer, R. A., 1999. Advances in understanding clouds from ISCCP. Bulletin of the American Meteorological Society, 80, 2261–2287, doi:http://dx.doi.org/10.1175/1520-0477(1999)080<2261:AIUCFI>2.0.CO;2.

    Google Scholar 

  • Rutan, D. A., Rose, F. G., Smith, N. M., and Charlock, T. P., 2001. Validation data set for CERES surface and atmospheric radiation budget (SARB), WCRP/GEWEX Newsletter, 11(1), 11–12.

    Google Scholar 

  • Schmetz, J., 1989. Towards a surface radiation climatology: retrieval of downward irradiance from satellites. Atmospheric Research, 23, 287–321.

    Google Scholar 

  • Schmetz, J., 1991. Retrieval of surface radiation fluxes from satellite data. Dynamics of the Atmospheres and Oceans, 16(1–2), 61–72.

    Google Scholar 

  • Schmetz, J., Pili, P., Tjemkes, S., Just, D., Kerkmann, J., Rota, S., and Ratier, A., 2002. An introduction to Meteosat Second Generation (MSG). Bulletin of the American Meteorological Society, 83, 977–992.

    Google Scholar 

  • Shi, Y., and Long, C. N., 2002. Techniques and methods used to determine the best estimate of radiation fluxes at SGP Central Facility. Paper presented at 12th ARM Science Team Meeting Proceedings, St. Petersburg, FL, 8–12 Apr 2002.

    Google Scholar 

  • Shmit, T. J., Gunshor, M. M., Menzel, W. P., Gurka, J. J., Li, J., and Bachmeier, A. S., 2005. Introducing the next generation advanced baseline imager on GOES-R. Bulletin of the American Meteorological Society, 1079–1096.

    Google Scholar 

  • Stackhouse, P. W., Jr., Gupta, S. K., Cox, S. J., Mikovitz, J. C., and Chiaachio, M., 2002. New results from the NASA/GEWEX Surface Radiation Budget Project: evaluating El Nino effects at different scales. 11th Conference on Atmospheric Radiation, American Meteorological Society, Ogden, UT, 3–7 Jun 2002.

    Google Scholar 

  • Stephens, G. L., et al., 2002. The CloudSat mission and the A-Train. Bulletin of the American Meteorological Society, 83, 1771–1790, doi:http://dx.doi.org/10.1175/BAMS-83-12-1771.

    Google Scholar 

  • Stephens, G. L., Vane, D. G., Boain, R. J., Mace, G. G., Sassen, K., Wang, Z., Illingworth, A. J., O'Connor, E. J., Rossow, W. B., Durden, S. L., Miller, S. D., Austin, R. T., Benedetti, A., Mitrescu, C., and the ClouSat Science Team, 2002a. The CloudSat mission and the A-train: a new dimension of space-based observations of clouds and precipitation. Bulletin of the American Meteorological Society, 83, 1771–1790.

    Google Scholar 

  • Stephens, G. L., Vane, D. G., Boain, R. J., and The ClouSat Science Team, 2002b. The Cloudsat mission and the A-Train: a new dimension of space-based observations of clouds and precipitation. Bulletin of the American Meteorological Society, 12, 1171–1790.

    Google Scholar 

  • Stephens, G. L., Li, J., Wild, M., et al., 2012. An update on Earth’s energy balance in light of the latest global observations. Nature Geoscience, 5(10), 691–696, doi:10.1038/NGEO1580.

    Article  Google Scholar 

  • Stuhlmann, R., Rieland, M., and Raschke, E., 1990. An improvement of the IGMK model to derive total and diffuse solar radiation at the surface from satellite data. Journal of Applied Meteorology, 29, 586–603.

    Google Scholar 

  • Trenberth, K. E., Fasullo, J. T., and Kiehl, J., 2009. Earth’s global energy. Bulletin of the American Meteorological Society, 90, 311–323, doi:10.1175/2008BAMS2634.1.

    Article  Google Scholar 

  • Valero, F. P. J., Pope, S. K., Bush, B. C., Nguyen, Q., Marsden, D., Cess, R. D., Simpson-Leitner, A. S., Bucholtz, A., and Udelhofen, P., 2003. Absorption of solar radiation by the clear and cloudy atmosphere during the Atmospheric Radiation Measurement Enhanced Shortwave Experiments (ARESE) I and II: observations and models. Journal of Geophysical Research-Atmospheres, 108, doi:10.1029/2001DJ001384.

    Google Scholar 

  • Vardavas, I. M., and Taylor, F. W., 2007. Radiation and climate. International Series of Monograph on Physics, 138. 512 pp.

    Google Scholar 

  • Wang, H., and Pinker, R. T., 2009. Shortwave radiative fluxes from MODIS: model development and implementation. Journal of Geophysical Research, 114, D20201, doi:10.1029/2008JD010442.

    Article  Google Scholar 

  • Whitlock, C. H., et al., 1995. First global WCRP shortwave surface radiation budget dataset. Bulletin of the American Meteorological Society, 76, 905–922.

    Google Scholar 

  • Whitlock, C. H., Charlock, T. P., Staylor, W. F., Pinker, R. T., Laszlo, I., Ohmura, A., Gilgen, H., Konzelman, T., DiPasquale, R. C., Moats, C. D, LeCroy, S. R., Wielicki, N. A., Barkstrom, B. R., Harrison, E. F., Lee, R. B., Louis Smith, G., and Cooper, J. E., 1996. Clouds and the Earth’s Radiant Energy System (CERES): an earth observing system experiment. Bulletin of the American Meteorological Society, 77, 853–868, doi:10.1175/1520-0477(1996)077.

    Google Scholar 

  • Wielicki, B. A., Barkstrom, B. R., Harrison, E. F. Lee, R. B., Louis Smith, G., and Cooper, J. E., 1996. Clouds and the Earth’s Radiant Energy System (CERES): an Earth observing system experiment. Bulletin of the American Meteorological Society, 77, 853–868, doi:10.1175/1520-0477(1996)077.

    Article  Google Scholar 

  • Winker, D. M., Tackett, J. L., Getzewich, B. J., Liu, Z., Vaughan, M. A., and Rogers, R. R. (2012). The global 3-D distribution of tropospheric aerosols as characterized by CALIOP. Atmospheric Chemistry and Physics. Discussion, 12, 24847–24893, doi:10.5194/acpd-12-24847-2012.

    Google Scholar 

  • Zhang, Y. C., Rossow, W. B., and Lacis, A. A., 1995. Calculation of surface and top of the atmosphere radiative fluxes from physical quantities based on ISCCP data sets. 1. Method and sensitivity to input data uncertainties. Journal of Geophysical Research, 100(D1), 1149–1165, doi:10.1029/94JD02747.

    Article  Google Scholar 

  • Zhang, Y.-C., Rossow, W. B., Lacis, A. A., Oinas, V., and Mishchenko, M. I., 2004. Calculation of radiative flux profiles from the surface to top-of-atmosphere based on ISCCP and other global datasets: refinements of the radiative transfer model and the input data. Journal of Geophysical Research, 109, D19105, doi:10.1029/2003JD004457.

    Article  Google Scholar 

  • Zhang, Y., Rossow, W. B., and Stackhouse, P. W., Jr., 2006. Comparison of different global information sources used in surface radiative flux calculation: radiative properties of the near-surface atmosphere. Journal of Geophysical Research, 111, D13106, doi:10.1029/2005JD006873.

    Article  Google Scholar 

  • Zhang, Y., Rossow, W. B., and Stackhouse, P. W., Jr., 2007. Comparison of different global information sources used in surface radiative flux calculation: radiative properties of the surface. Journal of Geophysical Research, 112, D01102, doi:10.1029/2005JD007008.

    Article  Google Scholar 

  • Zhang, T., Stackhouse, P. W. Jr., Gupta, S. K., et al., 2013. The validation of the GEWEX SRB surface shortwave flux data products using BSRN measurements: a systematic quality control, production and application approach. Journal of Quantitative Spectroscopy & Radiative Transfer, 122, Special Issue: 127–140, doi:10.1016/j.jqsrt.2012.10.004.

    Google Scholar 

  • Zhou, Y., Kratz, D. P., Wilber, A. C., Gupta, S. K., and Cess, R. D., 2007. An improved algorithm for retrieving surface downwelling longwave radiation from satellite measurements. Journal of Geophysical Research, 112, D15102, doi:10.1029/2006JD008159.

    Google Scholar 

Download references

Acknowledgments

We thank NASA for the support of our work under grant NNX08AN40A from the Science Mission Directorate-Division of Earth Science and grant NNX13AC12G from the Energy and Water Cycle Study (NEWS) program. The work also benefited from the support under NOAA grant NA09NES4400006, the Cooperative Institute for Climate and Satellites (CICS) at the University of Maryland/ESSIC.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this entry

Cite this entry

Pinker, R.T. (2014). Surface Radiative Fluxes. In: Njoku, E.G. (eds) Encyclopedia of Remote Sensing. Encyclopedia of Earth Sciences Series. Springer, New York, NY. https://doi.org/10.1007/978-0-387-36699-9_199

Download citation

Publish with us

Policies and ethics