Skip to main content

Electromagnetic Theory and Wave Propagation

  • Reference work entry
  • First Online:
Encyclopedia of Remote Sensing

Part of the book series: Encyclopedia of Earth Sciences Series ((EESS))

Definition

Electromagnetic theory. Theory based on the Maxwell equations to study the properties and dynamics of electromagnetic fields.

Wave propagation. The process of transporting electromagnetic energy.

Maxwell equations

The Maxwell equations lay the foundation of all classical electromagnetic phenomena. They describe how time-varying electric fields give rise to magnetic fields and vice versa. The Maxwell equations are a set of four equations

$$ \nabla \cdot \mathbf{ D}=\rho (\mathrm{ Coulomb}\hbox{'}\mathrm{ s}\ {\mathrm{ law}}) $$
$$ \nabla \times \mathbf{ E}=-\frac{{\partial \mathbf{ B}}}{{\partial t}}(\mathrm{ Faraday}{'}\mathrm{ s}\, {\mathrm{ law}}) $$
(1)
$$ \begin{array}{ll} \nabla \times \mathbf{ H}=\frac{{\partial \mathbf{ D}}}{{\partial t}}+\mathbf{ J}\cr(\mathrm{ Ampere}\hbox{'}\mathrm{ s}\ \mathrm{ law}\ \mathrm{ with}\ \mathrm{ displacement}\ \mathrm{ current}\ \mathrm{ addition}) \end{array} $$
$$ \nabla \cdot \mathbf{ B}=0(\mathrm{ Absence}\ \mathrm{ of}\ \mathrm{...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 329.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Bibliography

  • Ahmed, S., and Naqvi, Q. A., 2008. Electromagnetic scattering from a perfect electromagnetic conductor cylinder buried in a dielectric half-space. Progress In Electromagnetics Research, 78, 25.

    Google Scholar 

  • Al-Rizzo, H. M., and Tranquilla, J. M., 1995. Electromagnetic wave scattering by highly elongated and geometrically composite objects of large size parameters: the generalized multipole technique. Applied Optics, 34, 3502.

    Google Scholar 

  • Alvarez-Perez, J., 2001. An extension of the IEM/IEMM surface scattering model. Waves in Random Media, 11, 307.

    Google Scholar 

  • Barber, P. W., 1954. Resonance electromagnetic absorption by nonspherical dielectric objects. IEEE Transactions on Microwave Theory and Techniques, 25, 373.

    Google Scholar 

  • Chen, K. S., Wu, T., Tsang, L., Li, Q., Shi, J. C., and Fung, A. K., 2003. Emission of rough surfaces calculated by the integral equation method with comparison to three-dimensional moment method simulations. IEEE Transactions on Geoscience and Remote Sensing, 41, 90.

    Google Scholar 

  • Chiu, T., and Sarabandi, K., 1999. Electromagnetic scattering interaction between a dielectric cylinder and a slightly rough surface. IEEE Transactions on Antennas and Propagation, 47, 902.

    Google Scholar 

  • Chiu, T., and Sarabandi, K., 2000. Electromagnetic scattering from short branching vegetation. IEEE Transactions on Geoscience and Remote Sensing, 38, 911.

    Google Scholar 

  • Davidson, M. W. J., Le Toan, T., Mattia, F., Satalino, G., Manninen, T., and Borgeaud, M., 2000. On the characterization of agricultural soil roughness for radar remote sensing studies. IEEE Transactions on Geoscience and Remote Sensing, 38, 630.

    Google Scholar 

  • De Roo, R. D., Du, Y., Ulaby, F. T., and Dobson, M. C. A., 2001. Semi-empirical backscattering model at L-band and C-band for a soybean canopy with soil moisture inversion. IEEE Transactions on Geoscience and Remote Sensing, 39, 864.

    Google Scholar 

  • Doicu, A., and Wriedt, T., 1999. Calculation of the T-matrix in the null field method with discrete sources. Journal of the Optical Society of America, 16, 2539.

    Google Scholar 

  • Du, Y., 2008. A new bistatic model for electromagnetic scattering from randomly rough surfaces. Waves in Random and Complex Media, 18, 109.

    Google Scholar 

  • Du, Y., Xu, T., Luo, Y. L., and Kong, J. A., 2005. A statistical Kirchhoff model for EM scattering from Gaussian rough surface. PIERS Proceedings, 1(2), 187–191.

    Google Scholar 

  • Du, Y., Kong, J. A., Yan, W. Z., Wang, Z. Y., and Peng, L., 2007. A statistical integral equation model for shadow-corrected EM scattering from a Gaussian rough surface. IEEE Transactions on Antennas and Propagation, 55, 1843.

    Google Scholar 

  • Du, Y., Luo, Y. L., Yan, W. Z., and Kong, J. A., 2008. An electromagnetic scattering model for soybean canopy. Progress In Electromagnetics Research, 79, 209.

    Google Scholar 

  • Elfouhaily, T. M., and Guerin, C.-A., 2004. A critical survey of approximate scattering wave theories from random rough surfaces. Waves Random Media, 14, R1.

    Google Scholar 

  • Eremina, E., Eremin, Y., and Wriedt, T., 2004. Extension of the discrete sources method to light scattering by highly elongated finite cylinders. Journal of Modern Optics, 51, 423.

    Google Scholar 

  • Fung, A. K., 1994. Microwave Scattering and Emission Models and Their Applications. Norwood, MA: Artech House.

    Google Scholar 

  • Harrington, R. F., 1961. Time-Harmonic Electromagnetic Fields. New York: McGraw-Hill.

    Google Scholar 

  • Henin, B. H., Elsherbeni, A. Z., and Al Sharkawy, M. H., 2007. Oblique incidence plane wave scattering from an array of circular dielectric cylinders. Progress in Electromagnetics Research, 68, 261.

    Google Scholar 

  • Hsieh, C. Y., and Fung, A. K., 1999. Application of an extended IEM to multiple surface scattering and backscatter enhancement. Journal of Electromagnetic Waves and Applications, 13, 121.

    Google Scholar 

  • Iskander, M., Lakhtakia, A., and Durney, C., 1983. A new procedure for improving the solution stability and extending the frequency range of the EBCM. IEEE Transactions on Antennas and Propagation, 31, 317.

    Google Scholar 

  • Jackson, J. D., 1998. Classical Electrodynamics, 3rd edn. New York: Wiley.

    Google Scholar 

  • Kahnert, F. M., 2003. Numerical methods in electromagnetic scattering theory. Journal of Quantitative Spectroscopy and Radiative Transfer, 79–80, 755.

    Google Scholar 

  • Karam, M. A., and Fung, A. K., 1988. Electromagnetic wave scattering from some vegetation samples. IEEE Transactions on Geoscience and Remote Sensing, 26, 799.

    Google Scholar 

  • Kong, J. A., 2005. Electromagnetic Wave Theory. Cambridge: EMW Publishing.

    Google Scholar 

  • Lin, Y. C., and Sarabandi, K., 1997. A Monte Carlo coherent scattering model for forest canopies using fractal generated trees. IEEE Transactions on Geoscience and Remote Sensing, 37, 36.

    Google Scholar 

  • Mishchenko, M. I., and Travis, L. D., 1994. T-matrix computations of light scattering by large spheroidal particles. Optics Communications, 109, 16.

    Google Scholar 

  • Notarnicola, C., and Posa, F., 2007. Inferring vegetation water content from C- and L-band SAR images. IEEE Transactions on Geoscience and Remote Sensing, 45, 3165.

    Google Scholar 

  • Rodriguez, E., 1991. Beyond the Kirchhoff approximation. Radio Science, 26, 121.

    Google Scholar 

  • Roussel, H., Chew, W. C., Jouvie, F., and Tabbara, W., 1996. Electromagnetic scattering from dielectric and magnetic gratings of fibers: a T-matrix solution. Journal of Electromagnetic Waves and Applications, 10, 109.

    Google Scholar 

  • Schiffer, R., and Thielheim, K. O., 1979. Light scattering by dielectric needles and disks. Journal of Applied Physics, 50, 2476.

    Google Scholar 

  • Singh, D., and Kathpalia, A., 2007. An efficient modeling with GA approach to retrieve soil texture, moisture and roughness from ERS-2 SAR data. Progress In Electromagnetics Research, PIER, 77, 121.

    Google Scholar 

  • Stiles, J. M., and Sarabandi, K., 1996. A scattering model for thin dielectric cylinders of arbitrary crosssection and electrical length. IEEE Transactions on Antennas and Propagation, 44, 260.

    Google Scholar 

  • Storvold, R., Malnes, E., Larsen, Y., Hogda, K. A., Hamran, S. E., Muller, K., and Langley, K. A., 2006. SAR remote sensing of snow parameters in Norwegian areas – Current status and future perspective. Journal of Electromagnetic Waves and Applications, 20, 1751.

    Google Scholar 

  • Tsang, L., Kong, J. A., and Shin, R. T., 1985. Theory of Microwave Remote Sensing. New York: Wiley.

    Google Scholar 

  • Ulaby, F. T., Moore, R. K., and Fung, A. K., 1982. Microwave Remote Sensing: Active and Passive. Bedham, MA: Artech House.

    Google Scholar 

  • Wang, L. F., Kong, J. A., Ding, K. H., Le Toan, T., Ribbes, F., and Floury, N., 2005. Electromagnetic scattering model for rice canopy based on Monte Carlo simulation. Progress In Electromagnetics Research, 52, 153.

    Google Scholar 

  • Waterman, P. C., 1956. Matrix formulation of electromagnetic scattering. Proceedings of the IEEE, 53, 805.

    Google Scholar 

  • Wielaard, D. J., Mishchenko, M. I., Macke, A., and Carlson, B. E., 1997. Improved T-matrix computations for large, nonabsorbing and weakly absorbing nonspherical particles and comparison with geometrical optics approximation. Applied Optics, 36, 4305.

    Google Scholar 

  • Wriedt, T., Schuh, R., and Doicu, A., 2008. Scattering by aggregated fibres using a multiple scattering T-matrix approach. Particle and Particle Systems Characterization, 25, 74.

    Google Scholar 

  • Yan, W. Z., Du, Y., Liu, D. W., and Wu, B. I., 2008. EM scattering from a long dielectric circular cylinder. Progress in Electromagnetics Research, PIER, 85, 39.

    Google Scholar 

  • Yeh, C., Woo, R., Ishimaru, A., and Armstrong, J., 1982. Scattering by single ice needles and plates at 30 GHz. Radio Science, 17, 1503.

    Google Scholar 

  • Yueh, S. H., Kong, J. A., Jao, J. K., Shin, R. T., and Le Toan, T., 1992. Branching model for vegetation. IEEE Transactions on Geoscience and Remote Sensing, 30, 390.

    Google Scholar 

  • Zhang, G., Tsang, L., and Chen, Z., 1995. Collective scattering effects of trees generated by stochastic Lindenmayer systems. Microwave and Optical Technology Letters, 11, 107.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yang Du .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this entry

Cite this entry

Du, Y. (2014). Electromagnetic Theory and Wave Propagation. In: Njoku, E.G. (eds) Encyclopedia of Remote Sensing. Encyclopedia of Earth Sciences Series. Springer, New York, NY. https://doi.org/10.1007/978-0-387-36699-9_41

Download citation

Publish with us

Policies and ethics