Skip to main content

Pattern Recognition and Classification

  • Reference work entry
  • First Online:
Encyclopedia of Remote Sensing

Part of the book series: Encyclopedia of Earth Sciences Series ((EESS))

  • 744 Accesses

Definition

The classification of remote sensing images and the corresponding generation of land cover maps are perhaps the most common applications in remote sensing. In general, the aim of a land cover classification is the assignment of each pixel within the imagery to a specific information class (e.g., forest areas). In general, this is performed by methods of machine learning and pattern recognition. Pattern recognition can be defined as a technique to classify data (patterns) based either on a priori knowledge or statistical information extracted from the patterns.

Introduction

During the last decades, remote sensing became a valuable and important tool to monitor the Earth. Overall it had a significant impact on the acquisition and analysis of environmental data, and the manner how the planet is observed was revolutionized (Rosenqvist et al., 2003). Nowadays remote sensing imagery and corresponding products, such as land cover maps, are helping to support environmental...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Bibliography

  • Backhaus, B., and Beule, B., 2005. Efficiency evaluation of satellite data products in environmental policy. Space Policy, 21, 173–183.

    Google Scholar 

  • Benediktsson, J. A., Swain, P. H., and Ersoy, O. K., 1990. Neural network approaches versus statistical-methods in classification of multisource remote-sensing data. IEEE Transaction on Geoscience and Remote Sensing, 28, 540–552.

    Google Scholar 

  • Benediktsson, J. A., Sveinsson, J. R., and Amason, A., 1995. Classification and feature extraction of AVIRIS data. IEEE Transaction on Geoscience and Remote Sensing, 33, 1194–1205.

    Google Scholar 

  • Bishop, C. M., 1995. Neural Networks for Pattern Recognition. Oxford: Clarendon.

    Google Scholar 

  • Breiman, L., Friedman, J., Olshen, R. A., and Stone, C. J., 1984. Classification and Regression Trees. Boca Raton, FL: CRC Press.

    Google Scholar 

  • Briem, G. J., Benediktsson, J. A., and Sveinsson, J. R., 2002. Multiple classifiers applied to multisource remote sensing data. IEEE Transaction on Geoscience and Remote Sensing, 40, 2291–2299.

    Google Scholar 

  • Bruzzone, L., and Prieto, D., 1999. A technique for the selection of kernel-function parameters in RBF neural networks for classification of remote-sensing images. IEEE Transaction on Geoscience and Remote Sensing, 37, 1179–1184.

    Google Scholar 

  • Bruzzone, L., Marconcini, M., Wegmuller, U., and Wiesmann, A., 2004. An advanced system for the automatic classification of multitemporal SAR images. IEEE Transaction on Geoscience and Remote Sensing, 42, 1321–1334.

    Google Scholar 

  • Burges, C. J. C., 1998. A tutorial on support vector machines for pattern recognition. Data Mining and Knowledge Discovery, 2, 121–167.

    Google Scholar 

  • Camps-Valls, G., Gomez-Chova, L., Munoz-Mari, J., Rojo-Alvarez, J. L., Martinez-Ramon, M., Vila-Frances, J., and Calpe-Maravilla, J., 2006. Composite kernels for hyperspectral image classification. IEEE Transaction on Geoscience and Remote Sensing, 3, 93–97.

    Google Scholar 

  • Camps-Valls, G., Gomez-Chova, L., Munoz-Mari, J., Rojo-Alvarez, J. L., and Martinez-Ramon, M., 2008. Kernel-based framework for multitemporal and multisource remote sensing data classification and change detection. IEEE Transaction on Geoscience and Remote Sensing, 46, 1822–1835.

    Google Scholar 

  • Chapelle, O., Vapnik, V., Bousquet, O., and Mukherjee, S., 2001. Choosing multiple parameters for support vector machines. Machine Learning, 46, 131–159.

    Google Scholar 

  • Chi, M., and Bruzzone, L., 2007. Semisupervised classification of hyperspectral images by svms optimized in the primal. IEEE Transaction on Geoscience and Remote Sensing, 45, 1870–1880.

    Google Scholar 

  • Chung, K.-M., Kao, W.-C., Sun, C.-L., Wang, L.-L., and Lin, C.-J., 2003. Radius margin bounds for support vector machines with the RBF kernel. Neural Computing, 15, 2643–2681.

    Google Scholar 

  • Duda, R. O., Hart, P. E., and Stork, D. G., 2001. Pattern Classification, 2nd edn. New York: Wiley.

    Google Scholar 

  • Esposito, F., Malerba, D., Semeraro, G., and Kay, J., 1997. A comparative analysis of methods for pruning decision trees. IEEE Transaction on Pattern Analysis and Machine Intelligence, 19, 476–491.

    Google Scholar 

  • Foody, G. M., and Mathur, A., 2004. A relative evaluation of multiclass image classification by support vector machines. IEEE Transaction on Geoscience and Remote Sensing, 42, 1335–1343.

    Google Scholar 

  • Foody, G., 2008. RVM-based multi-class classification of remotely sensed data. International Journal of Remote Sensing, 29, 1817–1823.

    Google Scholar 

  • Ghoggali, N., Melgani, F., and Bazi, Y., 2009. A multiobjective genetic svm approach for classification problems with limited training samples. IEEE Transaction on Geoscience and Remote Sensing, 47, 1707–1718.

    Google Scholar 

  • Huang, C., Davis, L. S., and Townshend, J. R., 2002. An assessment of support vector machines for land cover classification. International Journal of Remote Sensing, 23, 725–749.

    Google Scholar 

  • Jackson, Q., and Landgrebe, D. A., 2002. An adaptive method for combined covariance estimation and classification. IEEE Transaction on Geoscience and Remote Sensing, 40, 1082–1087.

    Google Scholar 

  • Lin, H.-T., Lin, C.-J., and Weng, R. C., 2003. A note on Platt’s probabilistic outputs for support vector machines. Technical report, Department of Computer Science, National Taiwan University, Available from World Wide Web: http://www.csie.ntu.edu.tw/∼cjlin/papers/plattprob.ps.

  • Melgani, F., and Bruzzone, L., 2004. Classification of hyperspectral remote sensing images with support vector machines. IEEE Transaction on Geoscience and Remote Sensing, 42, 1778–1790.

    Google Scholar 

  • Pal, M., and Mather, P. M., 2006. Some issues in the classification of DAIS hyperspectral data. International Journal of Remote Sensing, 27, 2895–2916.

    Google Scholar 

  • Paola, J. D., and Schowengerdt, R. A., 1995. A detailed comparison of backpropagation neural network and maximum-likelihood classifiers for urban land use classification. IEEE Transaction on Geoscience and Remote Sensing, 33, 981–996.

    Google Scholar 

  • Peter, N., 2004. The use of remote sensing to support the application of multilateral environmental agreements. Space Policy, 20, 189–195.

    Google Scholar 

  • Plaza, A., Benediktsson, J. A., Boardman, J. W., Brazile, J., Bruzzone, L., Camps-Valls, G., Chanussot, J., Fauvel, M., Gamba, P., Gualtieri, A., Marconcini, M., Tilton, J. C., and Trianni, G., 2009. Recent advances in techniques for hyperspectral image processing. Remote Sensing of Environment, 113(1), S110–S122.

    Google Scholar 

  • Richards, J. A., and Jia, X., 2006. Remote Sensing Digital Image Analysis: An Introduction, 4th edn. New York: Springer.

    Google Scholar 

  • Rosenqvist, A., Milne, A., Lucas, R., Imhoff, M., and Dobson, C., 2003. A review of remote sensing technology in support of the Kyoto Protocol. Environmental Science and Policy, 6, 441–455.

    Google Scholar 

  • Roscher, R., Förstner, W., and Waske, B., 2012a. I2VM: incremental import vector machines. Image and Vision Computing, 30, 263–278.

    Google Scholar 

  • Roscher, R., Waske, B., and Förstner, W., 2012b. Incremental import vector machines for classifying hyperspectral data. IEEE Transaction on Geoscience and Remote Sensing, 50, 3463–3473.

    Google Scholar 

  • Safavian, S. R., and Landgrebe, D. A., 1991. A survey of decision tree classifier methodology. IEEE Transaction on Systems, Man, and Cybernetics, 21, 660–674.

    Google Scholar 

  • Shahshahani, B. M., and Landgrebe, D. A., 1994. The effect of unlabeled samples in reducing the small sample size problem and mitigating the Hughes phenomenon. IEEE Transaction on Geoscience and Remote Sensing, 32, 1087–1095.

    Google Scholar 

  • Vapnik, V., 1999. The Nature of Statistical Learning Theory. New York: Springer.

    Google Scholar 

  • Waske, B., and Benediktsson, J. A., 2014. Decision fusion for classification of multisource remote sensing data. In Farr, T., and Njoku, E. G. (eds.), Encyclopedia of Remote Sensing. New York: Springer, in press.

    Google Scholar 

  • Waske, B., and Benediktsson, J. A., 2007. Fusion of support vector machines for classification of multisensor data. IEEE Transaction on Geoscience and Remote Sensing, 45, 3858–3866.

    Google Scholar 

  • Waske, B., and Braun, M., 2009. Classifier ensembles for land cover mapping using multitemporal SAR imagery. ISPRS Journal of Photogrammetry and Remote Sensing, 64, 450–457.

    Google Scholar 

  • Waske, B., van der Linden, S., Benediktsson, J. A., Rabe, A., and Hostert, P., 2010. Sensitivity of support vector machines to random feature selection in classification of hyperspectral data. IEEE Transactions on Geoscience and Remote Sensing, 48, 2880–2889.

    Google Scholar 

  • Wu, T.-F., Lin, C.-J., and Weng, R. C., 2004. Probability estimates for multi-class classification by pairwise coupling. Journal of Machine Learning Research, 5, 975–1005.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Björn Waske .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this entry

Cite this entry

Waske, B., Benediktsson, J.A. (2014). Pattern Recognition and Classification. In: Njoku, E.G. (eds) Encyclopedia of Remote Sensing. Encyclopedia of Earth Sciences Series. Springer, New York, NY. https://doi.org/10.1007/978-0-387-36699-9_69

Download citation

Publish with us

Policies and ethics