Skip to main content

Land Surface Temperature

  • Reference work entry
  • First Online:
Encyclopedia of Remote Sensing

Part of the book series: Encyclopedia of Earth Sciences Series ((EESS))

Definition

Land surface temperature (LST). Average temperature of an element of the exact surface of the Earth calculated from measured radiance (for a complete definition, see Norman and Becker, 1995).

Blackbody. An ideal material absorbing all incident energy or emitting all thermal energy possible. A cavity with a pinhole aperture approximates a blackbody.

Color temperature. Temperature satisfying Planck’s law for spectral radiances measured at two different wavelengths: for a gray body (this entry), for any emitter, or the blackbody temperature for which visual color is the same as some other source (e.g., in photography).

Emissivityε. The efficiency with which a surface radiates its thermal energy.

Irradiance. The power incident on a unit area, integrated over all directions (Wm−2).

Longwave infrared (LWIR). For most terrestrial surfaces (~340– ~ 240 K) peak thermal emittance occurs at LWIR (~8–14 μm).

Mid-infrared (MIR). Forest fires (~1,000–600 K) have peak thermal emittances...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Bibliography

  • Abtahi, A. A., Kahle, A. B., Abbott, E. A., Gillespie, A. R., Sabol, D., Yamada, G., and Pieri, D., 2002. Emissivity changes in basalt cooling after eruption from Pu’u O’o, Kilauea, Hawaii. Eos Transactions of the American Geophysical Union, 83(47), Fall Meeting Supplement, Abstract V71A–1263.

    Google Scholar 

  • Anding, D., and Kauth, R., 1970. Estimation of sea surface temperature from space. Remote Sensing of Environment, 1, 217–220.

    Google Scholar 

  • Berk, A., Anderson, G. P., Acharya, P. K., Bernstein, L. S., Muratov, L., Lee, J., Fox, M., Adler-Golden, S. M., Chetwynd, J. H., Hoke, M. L., Lockwood, R. B., Gardner, J. A., Cooley, T. W., and Lewis, P. E., 2005. MODTRAN5: a reformulated atmospheric band model with auxiliary species and practical multiple scattering options. In Proceedings of Algorithms and Technologies for Multispectral, Hyperspectral, and Ultraspectral Imagery, SPIE, 5806: 662; DOI:10.1117/12.606026.

    Google Scholar 

  • Conel, J. E., Green, R. O., Carrere, V., Margolis, J. S., Alley, R. E., Vane, G., Bruegge, C. J., and Gary, B. L., 1988. Atmospheric water mapping with the airborne visible/infrared imaging spectrometer (AVIRIS), Mountain Pass, CA. In Vane, G. (ed.), Proceedings of the AVIRIS Performance Evaluation Workshop. JPL Publication 88–38, Pasadena: Jet Propulsion Lab., pp. 21–26.

    Google Scholar 

  • Gao, B.-C., and Goetz, A. F. H., 1990. Column atmospheric water vapor and vegetation liquid water retrievals from airborne imaging spectrometer data. Journal of Geophysical Research-Atmospheres, 95, 3549–3564.

    Google Scholar 

  • Kalnay, E., Kanamitsu, M., Kistler, R., Collins, W., Deaven, D., Gandin, L., Iredell, M., Saha, S., White, G., Woollen, J., Zhu, Y., Chelliah, M., Ebsuzaki, W., Higgins, W., Janowiak, J., Mo, K. C., Ropelewski, C., Wang, J., Leetma, A., Reynolds, R., Jenne, R., and Joseph, D., 1996. The NCEP/NCAR 40-year reanalysis project. Bulletin of the American Meteorological Society, 77, 437–470.

    Google Scholar 

  • Lyon, R. J. P., 1965. Analysis of rocks by spectral infrared emission (8 to 25 microns). Economic Geology, 60(4), 715–736.

    Google Scholar 

  • Mushkin, A., and Gillespie, A. R., 2005. Estimating sub-pixel surface roughness using remotely sensed stereoscopic data. Remote Sensing of Environment, 99, 75–83.

    Google Scholar 

  • Norman, J. M., and Becker, F., 1995. Terminology in thermal infrared remote sensing of natural surfaces. Remote Sensing Reviews, 12, 159–173.

    Google Scholar 

  • Pieri, D. C., Glaze, L. S., and Abrams, M. J., 1990. Thermal radiance observations of an active lava flow during the June 1984 eruption of Mt. Etna. Geology, 18, 1018–1022.

    Google Scholar 

  • Seeman, S. W., Borbas, E. E., Li, J., Menzel, W. P., and Gumley, L. E., 2006. MODIS atmospheric profile retrieval algorithm theoretical basis document, version 6. Available from http://modis.gsfc.nasa.gov/data/atbd/atbd_mod07.pdf. Accessed 7 June, 2013.

  • Snyder, W. C., and Wan, Z.-M., 1998. BRDF models to predict spectral reflectance and emissivity in the thermal infrared. IEEE Transactions on Geoscience and Remote Sensing, 36, 214–255.

    Google Scholar 

  • Sobrino, J. A., Jiménez-Muñoz, J. C., and Paolini, L., 2004. Land surface temperature retrieval from Landsat TM 5. Remote Sensing of Environment, 90, 434–440.

    Google Scholar 

  • Tonooka, H., 2005. Accurate atmospheric correction of ASTER thermal infrared imagery using the water vapor scaling method. IEEE Transactions on Geoscience and Remote Sensing, 43(12), 2778–2792.

    Google Scholar 

  • Tonooka, H., and Palluconi, F. D., 2005. Validation of ASTER/TIR standard atmospheric correction using water surfaces. IEEE Transactions on Geoscience and Remote Sensing, 43(12), 2769–2777.

    Google Scholar 

  • van de Griend, A. A., and Owe, M., 1993. On the relationship between thermal emissivity and the normalized difference vegetation index for natural surface. International Journal of Remote Sensing, 14(6), 1119–1131.

    Google Scholar 

  • Wan, Z., 1999. MODIS land-surface temperature algorithm theoretical basis document (LST ATBD), Version 3.3. Contract NAS5-31370.

    Google Scholar 

  • Wan, Z., and Dozier, J., 1992. Effects of temperature-dependent molecular absorption coefficients on the thermal infrared remote sensing of the earth surface. In Proceedings IGARSS’92. pp. 1242–1245.

    Google Scholar 

  • Wan, Z., and Dozier, J., 1996. A generalized split-window algorithm for retrieving land-surface temperature from space. IEEE Transactions on Geoscience and Remote Sensing, 34(4), 892–905.

    Google Scholar 

  • Young, S. J., Johnson, R., and Hackwell, J. A., 2002. An in-scene method for atmospheric compensation of thermal hyperspectral data. Journal of Geophysical Research, 107(24), 4774, doi:10.1029/2001JD001266.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alan Gillespie .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this entry

Cite this entry

Gillespie, A. (2014). Land Surface Temperature. In: Njoku, E.G. (eds) Encyclopedia of Remote Sensing. Encyclopedia of Earth Sciences Series. Springer, New York, NY. https://doi.org/10.1007/978-0-387-36699-9_79

Download citation

Publish with us

Policies and ethics