Skip to main content

Part of the book series: Advances in Information Security ((ADIS,volume 30))

  • 861 Accesses

Abstract

We present a novel scheme for node localization in a Delay-Tolerant Sensor Network (DTN). In a DTN, sensor devices are often organized in network clusters that may be mutually disconnected. Some mobile-robots may be used for data collection from the network clusters. The key idea in our scheme is to use this robot to perform location estimation for the sensor nodes it passes by based on the signal strength of radio messages received from them. Thus we eliminate the processing constraints of static sensor nodes and the need for static reference beacons. Our mathematical contribution is the use of a Robust Extended Kalman Filter (REKF) based state estimator to solve the localization. Compared to the standard extended Kalman filter, REKF is computationally efficient and also more robust, since it does not make any assumptions about the measurement noise. Finally, we have implemented our localization scheme on a hybrid sensor network testbed, and show that it can achieve node localization accuracy within 1m in a large indoor setting.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 229.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. P. Bahl and V. N. Padmanabhan. Radar: An in-building user location and tracking system. In Proceedings of IEEE Infocom 2000, volume 2, pages 775–784, Tel-Aviv, Israel, March 2000. IEEE.

    Google Scholar 

  2. Nirupama Bulusu, John Heidemann, and Deborah Estrin. Gps-less low cost outdoor localization for very small devices. IEEE Personal Communications Magazine, 7(5):28–34, October 2000.

    Article  Google Scholar 

  3. D. Estrin, R. Govindan, J. Heidemann, and S. Kumar. Next century challenges: Scalable coordination in sensor networks. In Proceedings of the ACM MobiCom 99, pages 263–270, Seattle, WA, USA, August” 15–20” 1999. ACM Press.

    Google Scholar 

  4. T. Eren, D. Goldenberg, W. Whitley, YR Yang, AS. Morse, BDO Anderson, and PN Belheumer. Rigidity, computation, and randomization of network localization. In Proceedings of IEEE Infocom 2004, March 2004.

    Google Scholar 

  5. Dealy Tolerant Networking Research Group. The sammi network. http://www.cdt.luth.se/babylon/snc/.

    Google Scholar 

  6. M. Hellebrandt and R. Mathar. Location tracking of mobiles in cellular radio networks. IEEE Transcation on Vehicular Technology, 48(5):1558–1562, September 1999.

    Article  Google Scholar 

  7. Jeffrey Hightower and Gaetano Borriello. Location systems for ubiquitous computing. IEEE Computer, 34(8):57–66, August 2001.

    Google Scholar 

  8. Crossbow Technologies Incorporated. http://www.xbow.com.

    Google Scholar 

  9. M.R. James and I.R. Petersen. Nonlinear state estimation for uncertain systems with an integral constraint. IEEE Transactions on Signal Processing, 46(11):2926–2937, November 1998.

    Article  MathSciNet  Google Scholar 

  10. J.M. Kahn, R.H. Katz, and K.S.J. Pister. Next century challenges: Mobile networking for smart dust. In Proceedings of ACM/IEEE MobiCom 99, pages 271–278, Seattle, WA, USA, August” 15–20” 1999. ACM Press.

    Google Scholar 

  11. K. Joanna, R.W. Heinzelman, and H. Balakrishnan. Negotiation-based protocols for disseminating information in wireless sensor networks. Wireless Networks, 1999.

    Google Scholar 

  12. P. Juang, H. Oki, Y. Wang, M. Martonosi, L. Peh, and D. Rubenstein. Energy-efficient computing for wildlife tracking: Design tradeoffs and early experiences with zebranet. In Proceedings of ASPLOS-X, pages 96–107, San Jose, CA, October 2002. ACM.

    Google Scholar 

  13. K. Fall. A delay-tolerant network architecture for challenged internets. Technical Report IRB-TR-03-003, Intel Research Berkeley, February 2003.

    Google Scholar 

  14. Inc. Lego Mindstorms. http://www.xbow.com.

    Google Scholar 

  15. T. Liu, P. Bahl, and I. Chlamtac. Mobility modelling, location tracking, and trajectory prediction in wireless ATM networks. IEEE Journal on Selected Areas in Communications, 16(6):922–936, August 1998.

    Article  Google Scholar 

  16. The Mica mote. http://www.xbow.com/Products/productsdetails. aspx?sid=61.

    Google Scholar 

  17. P.N. Pathirana and A.V. Savkin. Precision missile guidance with angle only measurements. In Proceedings of the Information Decision and Control Conference, Adelaide, Australia, February 2002.

    Google Scholar 

  18. I.R. Petersen and A.V. Savkin. Robust Kalman Filtering for Signals and Systems with Large Uncertainities. Birkhauser, Boston, 1999.

    Google Scholar 

  19. N. Priyantha, A. Chakraborty, and H. Balakrishnan. The cricket location support system. In Proceedings of ACM MobiCom 2000, pages 32–43, Boston, MA, USA, August 2000. ACM.

    Google Scholar 

  20. A.V. Savkin and R.J. Evans. Hybrid dynamical systems: Controller and Sensor Switching Problems. Birkhäuser, Boston, 2002.

    MATH  Google Scholar 

  21. A.V. Savkin, P.N. Pathirana, and F.A. Faruqi. The problem of precision missile guidance: LQR and H∞ control frameworks. IEEE Transactions on Aerospace and Electronic Systems, 39(3):901–910, July 2003.

    Article  Google Scholar 

  22. A.V. Savkin and I.R. Petersen. Recursive state estimation for uncertain systems with an integral quadratic constraint. IEEE Transactions on Automatic Control, 40(6): 1080–1083, 1995.

    Article  MATH  MathSciNet  Google Scholar 

  23. A. Savvides, C. Han, and MB. Srivastava. Dynamic fine-grained localization in ad-hoc networks of sensors. In Proceedings of ACM MobiCom 2001, pages 166–179, Rome, Italy, July 2001. ACM.

    Google Scholar 

  24. R. Shah, S. Roy, S. Jain, and W. Burnette. Datamules: Modeling a three-tier architecture for sparse sensor networks. In Elsevier ad hoc networks journal, volume 1, pages 215–233. Elsevier, 2003.

    Article  Google Scholar 

  25. G.T. Sibley, M.H. Rahimi, and G.S. Sukhatme. Robomote: A tiny mobile robot platform for large-scale ad-hoc sensor networks. In Proceedings of the IEEE International Conference on Robotics and Automation (ICRA-2002), volume 2, pages 1143–1148, Washington D.C, USA, May 11–15 2002. IEEE.

    Google Scholar 

  26. Stargate. http://www.xbow.com/Products/productsdetails.as px?sid=85.

    Google Scholar 

  27. H.H. Xia. An analytical model for predicting path loss in urban and suburban environments. In PIRMC, 1996.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Science+Business Media, LLC

About this paper

Cite this paper

Pathirana, P.N., Bulusu, N., Savkin, A.V., Jha, S., Dang, T.X. (2007). Node Localization Using Mobile Robots in Delay-Tolerant Sensor Networks. In: Poovendran, R., Roy, S., Wang, C. (eds) Secure Localization and Time Synchronization for Wireless Sensor and Ad Hoc Networks. Advances in Information Security, vol 30. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-46276-9_4

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-46276-9_4

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-387-32721-1

  • Online ISBN: 978-0-387-46276-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics