Abstract
The idea of using diversity to guide evolutionary algorithms is gaining interest. However, it is mainly used in static problems or in dynamic continuous optimization problems. In this paper, we investigate the idea on dynamic combinatorial problems.
The paper uses a measure for population diversity based on distance from the population-best individual rather than distance between all possible pairs in the population. The measured diversity is used to adjust the mutation rate and the selection probability in a standard genetic algorithm whenever the diversity is found to be excessively low or excessively high.
This adaptive scheme aims to retain the algorithm ability to search the solution space even after the population converges prematurely around some suboptimal solution. This scheme also enables the algorithm to persevere after converging around solutions that become obsolete due to environmental changes. Tests on several benchmarks of dynamic travelling salesman problem show that the scheme is promising.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
J. Branke. Evolutionary approaches to dynamic optimization problems: A survey. pp. 134–137, GECCO Workshops, A. Wu (ed.), 1999.
E. K. Burke, S. Gustafson, and G. Kendall. Diversity in genetic programming: An analysis of measures and correlation with fitness. IEEE Transactions on Evolutionary Computation, 8(1):47–62, 2004.
K. A. De Jong. An Analysis of the Behavior of a Class of Genetic Adaptive Systems. PhD thesis, University of Michigan, 1975.
C. J. Eyckelhof and M. Snoek. Ant systems for a dynamic TSP. In Ant Algorithms, pages 88–99, 2002.
M. Gen and R. Cheng. Genetic Algorithms. John Wiley & Sons, Inc., New York, NY, USA, 1999.
J. J. Grefenstette. Evolvability in dynamic fitness landscapes: a genetic algorithm approach. In 1999 Congress on Evolutionary Computation, pages 2031–2038, Piscataway, NJ, 1999. IEEE Service Center.
M. Guntsch, M. Middendorf, and H. Schmeck. An ant colony optimization approach to dynamic tsp. In L. Spector, E. D. Goodman, A. Wu, W. Langdon, H.-M. Voigt, M. Gen, S. Sen, M. Dorigo, S. Pezeshk, M. H. Garzon, and E. Burke, editors, Proceedings of the Genetic and Evolutionary Computation Conference (GECCO-2001), pages 860–867, San Francisco, California, USA, 7-11 July 2001. Morgan Kaufmann.
Y. Hochberg and A. C. Tamhane. Multiple Comparison Procedures. Wiley, 1987.
N. Krasnogor and J. Smith. A tutorial for competent memetic algorithms: model, taxonomy, and design issues. IEEE Transactions on Evolutionary Computation, 9(5):474–488, 2005.
P. Merz. Advanced fitness landscape analysis and the performance of memetic algorithms. Evol. Comput., 12(3):303–325, 2004.
P. Merz and B. Freisleben. Genetic local search for the TSP: New results. In IEEECEP: Proceedings of The IEEE Conference on Evolutionary Computation, IEEE World Congress on Computational Intelligence, 1997.
M. Mitchell. An Introduction to Genetic Algorithms. The MIT Press, Cambridge, Massachusetts, 1996.
C. R. Reeves and J. E. Rowe. Genetic Algorithms: Principles and Perspectives: A Guide to GA Theory. Kluwer Academic Publishers, Norwell, MA, USA, 2002.
G. Reinelt. TSPLIB — a traveling salesman problem library. ORSA Journal on Computing, 3:376 – 384, 1991.
J. Riget and J. Vesterstroem. A diversity-guided particle swarm optimizer - the arpso, 2002.
K. Sörensen and M. Sevaux. MA—PM: Memetic algorithms with population management. Computers and Operations Research, 2004. In Press, available online 26 November 2004.
R. K. Ursem. Diversity-guided evolutionary algorithms. In Proceedings of Parallel Problem Solving from Nature VII (PPSN-2002), pages 462–471. Springer Verlag, 2002.
K. Weicker. Performance measures for dynamic environments. In J. Merelo, P. Adamidis, H.-G. Beyer, J. Fernández-Villacañas, and H.-P. Schwefel, editors, Parallel Problem Solving from Nature, volume 2439 of LNCS, pages 64–73. Springer, 2002.
D. Whitley, T. Starkweather, and D. Shaner. The traveling salesman and sequence scheduling: Quality solutions using genetic edge recombination. In L. Davis, editor, Handbook of Genetic Algorithms, pages 350–372. Van Nostrand Reinhold, New York, 1991.
A. Younes, O. Basir, and P. Calamai. A benchmark generator for dynamic optimization. In the 3rd WSEAS International Conference on Soft Computing, Optimization, Simulation & Manufacturing Systems, Malta, 2003. WSEAS.
A. Younes, P. Calamai, and O. Basir. Generalized benchmark generation for dynamic combinatorial problems. In F. Rothlauf, M. Blowers, J. Branke, S. Cagnoni, I. I. Garibay, O. Garibay, J. Grahl, G. Hornby, E. D. de Jong, T. Kovacs, S. Kumar, C. F. Lima, X. Llorà , F. Lobo, L. D. Merkle, J. Miller, J. H. Moore, M. O’Neill, M. Pelikan, T. P. Riopka, M. D. Ritchie, K. Sastry, S. L. Smith, H. Stringer, K. Takadama, M. Toussaint, S. C. Upton, and A. H. Wright, editors, Genetic and Evolutionary Computation Conference (GECCO2005) workshop program, pages 25–31, Washington, D.C., USA, 25-29 June 2005. ACM Press.
K. Q. Zhu. A diversity-controlling adaptive genetic algorithm for the vehicle routing problem with time windows. In ICTAI, pages 176–183, 2003.
K. Q. Zhu and Z. Liu. Population diversity in permutation-based genetic algorithm. In ECML, pages 537–547, 2004.
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2007 Springer Science+Business Media, LLC
About this chapter
Cite this chapter
Younes, A., Basir, O., Calamai, P. (2007). Adaptive Control of Genetic Parameters for Dynamic Combinatorial Problems. In: Doerner, K.F., Gendreau, M., Greistorfer, P., Gutjahr, W., Hartl, R.F., Reimann, M. (eds) Metaheuristics. Operations Research/Computer Science Interfaces Series, vol 39. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-71921-4_11
Download citation
DOI: https://doi.org/10.1007/978-0-387-71921-4_11
Publisher Name: Springer, Boston, MA
Print ISBN: 978-0-387-71919-1
Online ISBN: 978-0-387-71921-4
eBook Packages: Mathematics and StatisticsMathematics and Statistics (R0)