Skip to main content

Distance Dependent Protein Force Field via Linear Optimization

  • Reference work entry
Encyclopedia of Optimization

Introduction

Predicting the structure of a protein from its amino acid sequence is one of the biggest and yet most fundamental problems in computational structural biology. Anfinsen's hypothesis [1] is one of the main approaches used to solve this problem, which says that for a given physiological set of conditions the native structure of a protein corresponds to the global Gibbs free energy minimum. Thus, one needs a force field to calculate the energy of different conformers and pick the one with the lowest energy.

Physics-based force fields consider various types of interactions (for example, van der Waals interactions, hydrogen bonding, electrostatic interactions etc.) occurring at the atomic level of a protein to calculate the energy of a conformer. CHARMM [19], AMBER [5], ECEPP [20], ECEPP/3 [21] and GROMOS [24] are a few examples of the physics-based force fields. On the other hand, knowledge-based force fields use information from databases. Researchers have used the...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 2,500.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 2,499.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Anfinsen CB (1973) Principles that govern the folding of protein chains. Science 181:223–230

    Article  Google Scholar 

  2. Bahar I, Jernigan RL (1997) Inter-residue potential in globular proteins and the dominance of highly specific hydrophillic interactions at close separation. J Molec Biol 266:195–214

    Article  Google Scholar 

  3. Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov IN, Bourne PE (2000) The protein data bank. Nucleic Acids Res 28:235–242

    Article  Google Scholar 

  4. Bryant SH, Lawrence CE (1991) The frequency of ion-pair substructures in proteins is quantitaively related to electrostatic potential, a statistical model for nonbonded interactions. Proteins: Structure, Function, Bioinformatics 9:108–119

    Article  Google Scholar 

  5. Cornell WD, Cieplak P, Bayly CI, Gould IR, Merz Jr KM, Ferguson DM, Spellmeyer DC, Fox T, Caldwell JW, Kollman PA (1995) A second generation force field for the simulation of proteins, nucleic acids, and organic molecules. J Am Chem Soc 117:5179–5197

    Article  Google Scholar 

  6. DeBolt S, Skolnick J (1996) Evaluation of atomic level mean force potentials via inverse folding and inverse refinement of proteins structures: atomic burial position and pairwise non-bonded interactions. Protein Eng 9:637–655

    Article  Google Scholar 

  7. Finkelstein AV, Badretdinov AY, Gutin AM (1995) Why do proteins architectures have Boltzmann-like statistics? Proteins: Structure, Function, Bioinformatics 23:142–150

    Google Scholar 

  8. Floudas CA, Fung HK, McAllister SR, Mönnigmann M, Rajgaria R (2006) Advances in protein structure prediction and de novo protein design: A review. Chem Eng Sci 61:966–988

    Article  Google Scholar 

  9. Güntert P, Mumenthaler C, Wüthrich K (1997) Torsion angle dynamics for NMR structure calculation with the new program DYANA. J Molec Biol 273:283–298

    Article  Google Scholar 

  10. Hinds DA, Levitt M (1994) Exploring conformational space with a simple lattice model for protein structure. J Molec Biol 243:668–682

    Article  Google Scholar 

  11. ILOG CPLEX (2003) User's Manual 9.0

    Google Scholar 

  12. Jernigan RL, Bahar I (1996) Structure-derived potentials and protein simulations. Curr Opin Struct Biol 6:195–209

    Article  Google Scholar 

  13. Liwo A, Kazmierkiewicz R, Czaplewski C, Groth M, Oldziej S, Wawak RJ, Rackovsky S, Pincus MR, Scheraga HA (1998) A united-residue force field for off-lattice protein structure simulations. III. Origin of backbone hydrogen bonding cooperativity in united residue potential. J Comput Chem 19:259–276

    Article  Google Scholar 

  14. Liwo A, Odziej S, Czaplewski C, Kozlowska U, Scheraga HA (2004) Parametrization of backbone-electrostatic and multibody contributions to the UNRES force field for protein-structure prediction from ab initio energy surfaces of model systems. J Phys Chem B 108:9421–9438

    Article  Google Scholar 

  15. Liwo A, Oldziej S, Pincus MR, Wawak RJ, Rackovsky S, Scheraga HA (1997) A united-residue force field for off-lattice protein structure simulations. I. Functional forms and parameters of long-range side-chain interaction potentials from protein crystal data. J Comput Chem 18:849–873

    Article  Google Scholar 

  16. Liwo A, Pincus MR, Wawak RJ, Rackovsky S, Oldziej S, Scheraga HA (1997) A united-residue force field for off-lattice protein structure simulations. II. Parameterization of short-range interactions and determination of weights of energy terms by z-score optimization. J Comput Chem 18:874–887

    Article  Google Scholar 

  17. Loose C, Klepeis JL, Floudas CA (2004) A new pairwise folding potential based on improved decoy generation and side-chain packing. Proteins: Structure, Function, Bioinformatics 54:303–314

    Article  Google Scholar 

  18. Lu H, Skolnick J (2001) A distance-dependent knowledge-based potential for improved protein structure selection. Proteins: Structure, Function, Bioinformatics 44:223–232

    Article  Google Scholar 

  19. MacKerell Jr AD, Bashford D, Bellott M, Dunbrack Jr RL, Evanseck JD, Field MJ, Fischer S, Gao J, Guo H, Ha S, Joseph-McCarthy D, Kuchnir L, Kuczera K, Lau FTK, Mattos C, Michnick S, Ngo T, Nguyen DT, Prodhom B, Reiher III WE, Roux B, Schlenkrich M, Smith JC, Stote R, Straub J, Watanabe M, Wiórkiewicz-Kuczera J, Yin D, Karplus M (1998) All-atom empirical potential for molecular modeling and dynamics studies of proteins. J Phys Chem B 102:3586–3616

    Article  Google Scholar 

  20. Momany FA, McGuire RF, Burgess AW, Scheraga HA (1975) Energy parameters in polypeptides. VII. Geometric parameters, partial atomic charges, nonbonded interactions, hydrogen bond interactions, and intrinsic torsional potentials for the naturally occurring amino acids. J Phys Chem 79:2361–2381

    Article  Google Scholar 

  21. Némethy G, Gibson KD, Palmer KA, Yoon CN, Paterlini G, Zagari A, Rumsey S, Scheraga HA (1992) Energy parameters in polypeptides. 10. Improved geometrical parameters and nonbonded interactions for use in the ECEPP/3 algorithm, with application to proline-containing peptides. J Phys Chem 96:6472–6484

    Article  Google Scholar 

  22. Rajgaria R, McAllister SR, Floudas CA (2006) Development of a novel high resolution C  α–C  α distance dependent force field using a high quality decoy set. Proteins: Structure, Function, Bioinformatics 65:726–741

    Article  Google Scholar 

  23. Samudrala R, Moult J (1998) An all-atom distance-dependent conditional probability discriminatory function for protein structure prediction. J Molec Biol 275:895–916

    Article  Google Scholar 

  24. Scott WRP, Hunenberger PH, Trioni IG, Mark AE, Billeter SR, Fennen J, Torda AE, Huber T, Kruger P, VanGunsteren WF (1997) The GROMOS biomolecular simulation program package. J Phys Chem A 103:3596–3607

    Article  Google Scholar 

  25. Subramaniam S, Tcheng DK, Fenton J (1996) A knowledge-based method for protein structure refinement and prediction. In: States D, Agarwal P, Gaasterland T, Hunter L, Smith R (eds) Proceedings of the 4th International Conference on Intelligent Systems in Molecular Biology. AAAI Press, Boston, pp 218–229

    Google Scholar 

  26. Tanaka S, Scheraga HA (1976) Medium- and long-range interaction parameters between amino acids for predicting three-dimensional structures of proteins. Macromolecules 9:945–950

    Article  Google Scholar 

  27. Tobi D, Elber R (2000) Distance-dependent, pair potential for protein folding: Results from linear optimization. Proteins: Structure, Function, Bioinformatics 41:40–46

    Article  Google Scholar 

  28. Tobi D, Shafran G, Linial N, Elber R (2000) On the design and analysis of protein folding potentials. Proteins: Structure, Function, Bioinformatics 40:71–85

    Article  Google Scholar 

  29. Zhang Y, Skolnick J (2004) Automated structure prediction of weakly homologous proteins on a genomic scale. Proc Natl Acad Sci USA 101:7594–7599

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag

About this entry

Cite this entry

Rajgaria, R., McAllister, S.R., Floudas, C.A. (2008). Distance Dependent Protein Force Field via Linear Optimization . In: Floudas, C., Pardalos, P. (eds) Encyclopedia of Optimization. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-74759-0_135

Download citation

Publish with us

Policies and ethics