Skip to main content

Automatic Differentiation: Introduction, History and Rounding Error Estimation

  • Reference work entry
Encyclopedia of Optimization
  • 749 Accesses

Article Outline

Keywords

Introduction

  Algorithms

  Complexity

History

Estimates of Rounding Errors

See also

References

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Baur W, Strassen V (1983) The complexity of partial derivatives. Theor Comput Sci 22:317–330

    MathSciNet  MATH  Google Scholar 

  2. Berz M, Bischof C, Corliss G, Griewank A (eds) (1996) Computational differentiation: Techniques, applications, and tools. SIAM, Philadelphia

    MATH  Google Scholar 

  3. Griewank A (1992) Achieving logarithmic growth of temporal and spatial complexity in reverse automatic differentiation. Optim Methods Soft 1:35–54

    Google Scholar 

  4. Griewank A, Corliss GF (eds) (1991) Automatic differentiation of algorithms: Theory, implementation, and application. SIAM, Philadelphia

    MATH  Google Scholar 

  5. Hillstrom KE (1985) Installation guide for JAKEF. Techn Memorandum Math and Computer Sci Div Argonne Nat Lab ANL/MCS-TM-17

    Google Scholar 

  6. Hillstrom KE (1985) User guide for JAKEF. Techn Memorandum Math and Computer Sci Div Argonne Nat Lab ANL/MCS-TM-16

    Google Scholar 

  7. Iri M (1984) Simultaneous computation of functions, partial derivatives and estimates of rounding errors – Complexity and practicality. Japan J Appl Math 1:223–252

    MathSciNet  MATH  Google Scholar 

  8. Iri M, Tsuchiya T, Hoshi M (1988) Automatic computation of partial derivatives and rounding error estimates with applications to large-scale systems of nonlinear equations. J Comput Appl Math 24:365–392

    MATH  Google Scholar 

  9. Kagiwada H, Kalaba R, Rasakhoo N, Spingarn K (1986) Numerical derivatives and nonlinear analysis. Math. Concepts and Methods in Sci. and Engin., vol 31. Plenum, New York

    MATH  Google Scholar 

  10. Kubota K, Iri M (1991) Estimates of rounding errors with fast automatic differentiation and interval analysis. J Inform Process 14:508–515

    MathSciNet  MATH  Google Scholar 

  11. Linnainmaa S (1976) Taylor expansion of the accumulated rounding error. BIT 16:146–160

    MathSciNet  MATH  Google Scholar 

  12. Miller W, Wrathall C (1980) Software for roundoff analysis of matrix algorithms. Acad Press, New York

    MATH  Google Scholar 

  13. Ostrovskii GM, Wolin JM, Borisov WW (1971) Über die Berechnung von Ableitungen. Wiss Z Techn Hochschule Chemie 13:382–384

    Google Scholar 

  14. Rall LB (1981) Automatic differentiation – Techniques and applications. Lecture Notes Computer Science, vol 120. Springer, Berlin

    MATH  Google Scholar 

  15. Speelpenning B (1980) Compiling fast partial derivatives of functions given by algorithms. Report Dept Computer Sci Univ Illinois UIUCDCS-R-80-1002

    Google Scholar 

  16. Wengert RE (1964) A simple automatic derivative evaluation program. Comm ACM 7:463–464

    MATH  Google Scholar 

  17. Werbos P (1974) Beyond regression: New tools for prediction and analysis in the behavioral sciences. PhD Thesis, Appl. Math. Harvard University

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag

About this entry

Cite this entry

Iri, M., Kubota, K. (2008). Automatic Differentiation: Introduction, History and Rounding Error Estimation . In: Floudas, C., Pardalos, P. (eds) Encyclopedia of Optimization. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-74759-0_26

Download citation

Publish with us

Policies and ethics