Article Outline
Keywords
An Iterative Interval Method
Optimal Bounds
See also
References
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Alefeld G (1994) Inclusion methods for systems of nonlinear equations. In: Herzberger J (ed) Topics in Validated Computations: Studies in Computational Mathematics. North-Holland, Amsterdam, pp 7–26
Alefeld G, Herzberger J (1983) Introduction to interval computations Acad. Press, New York
Arithmos (1986) Benutzerhandbuch, Siemens, Bibl.-Nr. U 2900-I-Z87-1.
Hammer R, Hocks M, Kulisch U, Ratz D (1993) PASCAL-XSC: Basic numerical problems Springer, Berlin
Hansen ER (1992) Bounding the solution set of interval linear systems. SIAM J Numer Anal 29:1493–1503
Hansen E, Sengupta S (1981) Bounding solutions of systems of equations using interval analysis. BIT 21:203–211
Hansen E, Smith R (1967) Interval arithmetic in matrix computations. SIAM Numer Anal 2(4):1–9
IBM (1986) High-accuracy arithmetic subroutine library (ACRITH). Program Description and User's Guide SC 33-6164-02
Jansson C (1997) Calculation of exact bounds for the solution set of linear interval equations. Linear Alg & Its Appl 251:321–340
Jansson C, Rohn J (1999) An algorithm for checking regularity of interval matrices. SIAM J Matrix Anal Appl 20(3):756–776
Kearfott RB (1990) Preconditioners for the interval-Gauss-Seidel method. SIAM J Numer Anal 27(3):804–822
Kearfott RB (1996) Rigorous global search: continuous problems. Kluwer, Dordrecht
Knüppel O (1994) PROFIL/BIAS: A fast interval library. Computing 53:277–287
Krawczyk R (1969) Newton-Algorithmen zur Bestimmung von Nullstellen mit Fehlerschranken. Computing 4:187–201
Moore RE (1966) Interval analysis. Prentice-Hall, Englewood Cliffs, NJ
Moore RE (1979) Methods and applications of interval analysis. SIAM, Philadelphia
Neumaier A (1984) New techniques for the analysis of linear interval equations. Linear Alg & Its Appl 58:273–325
Neumaier A (1990) Interval methods for systems of equations. Encycl Math Appl. Cambridge Univ. Press, Cambridge
Oettli W (1965) On the solution set of a linear system with inaccurate coefficients. SIAM J Numer Anal 2:115–118
Oettli W, Prager W (1964) Compatibility of approximate solution of linear equations with given error bounds for coefficients and right-hand sides. Numer Math 6:405–409
Papadimitriou CH, Steiglitz K (1982) Combinatorial optimization: Algorithms and complexity. Prentice-Hall, Englewood Cliffs, NJ
Ris FN (1972) Interval analysis and applications to linear algebra. PhD Thesis Oxford Univ.
Rohn J (1986) A note on the sign-accord algorithm. Freiburger Intervall-Ber 86(4):39–43
Rohn J (1989) Systems of linear interval equations. Linear Alg & Its Appl 126:39–78
Rohn J (1991) Linear interval equations: computing enclosures with bounded relative or absolute overestimation is NP-hard. In: Kearfott RB, Kreinovich V (eds) Applications of Interval Computations. Kluwer, Dordrecht, pp 81–89
Rohn J (1992) Cheap and tight bounds: the result of E. Hansen can be made more efficient. Interval Comput 4:13–21
Rohn J (1994) NP-hardness results for linear algebraic problems with interval data. In: Herzberger J (ed) Topics in Validated Computations: Studies in Computational Mathematics. Elsevier, Amsterdam, 463–472
Rump SM (1983) Solving algebraic problems with high accuracy. Habilitationsschrift. In: Kulisch UW, Miranker WL (eds) A New Approach to Scientific Computation. Acad. Press, New York, pp 51–120
Rump SM (1993) Validated solution of large linear systems. In: Albrecht R, Alefeld G, Stetter HJ (eds) Computing Supplementum 9, Validation Numerics. Springer, Berlin, pp 191–212
Rump SM (1994) Verification methods for dense and sparse systems of equations. In: Herzberger J (ed) Topics in Validated Computations: Studies in Computational Mathematics. Elsevier, Amsterdam, pp 63 –136
Shary SP (1991) Optimal solutions of interval linear algebraic systems. Interval Comput 2:7–30
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2008 Springer-Verlag
About this entry
Cite this entry
Jansson, C. (2008). Interval Linear Systems . In: Floudas, C., Pardalos, P. (eds) Encyclopedia of Optimization. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-74759-0_307
Download citation
DOI: https://doi.org/10.1007/978-0-387-74759-0_307
Publisher Name: Springer, Boston, MA
Print ISBN: 978-0-387-74758-3
Online ISBN: 978-0-387-74759-0
eBook Packages: Mathematics and StatisticsReference Module Computer Science and Engineering