Skip to main content

Best Approximation in Ordered Normed Linear Spaces

  • Reference work entry
Encyclopedia of Optimization
  • 156 Accesses

Article Outline

Keywords and Phrases

Introduction

Metric Projection onto Downward and Upward Sets

Sets Z + and Z -

Downward Hull and Upward Hull

Metric Projection onto a Closed Set

Best Approximation in a Class of Normed Spaces with Star-Shaped Cones

Characterization of Best Approximations

Strictly Downward Sets and Their Best Approximation Properties

References

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 2,500.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 2,499.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chui CK, Deutsch F, Ward JD (1990) Constrained best approximation in Hilbert space. Constr Approx 6:35–64

    Article  MathSciNet  MATH  Google Scholar 

  2. Chui CK, Deutsch F, Ward JD (1992) Constrained best approximation in Hilbert space II. J Approx Theory 71:213–238

    Article  MathSciNet  MATH  Google Scholar 

  3. Deutch F (2000) Best approximation in inner product spaces. Springer, New York

    Google Scholar 

  4. Deutsch F, Li W, Ward JD (1997) A dual approach to constrained interpolation from a convex subset of a Hilbert space. J Approx Theory 90:385–414

    Article  MathSciNet  MATH  Google Scholar 

  5. Deutsch F, Li W, Ward JD (2000) Best approximation from the intersection of a closed convex set and a polyhedron in Hilbert space, weak Slater conditions, and the strong conical hull intersection property. SIAM J Optim 10:252–268

    Article  MathSciNet  Google Scholar 

  6. Martinez-Legaz J-E, Rubinov AM, Singer I (2002) Downward sets and their separation and approximation properties. J Global Optim 23:111–137

    Article  MathSciNet  MATH  Google Scholar 

  7. Mohebi H, Rubinov AM (2006) Best approximation by downward sets with applications. J Anal Theory Appl 22(1):1–22

    MathSciNet  Google Scholar 

  8. Mohebi H, Rubinov AM (2006) Metric projection onto a closed set: necessary and sufficent conditions for the global minimum. J Math Oper Res 31(1):124–132

    Article  MathSciNet  MATH  Google Scholar 

  9. Mohebi H, Sadeghi H, Rubinov AM (2006) Best approximation in a class of normed spaces with star-shaped cones. J Numer Funct Anal Optim 27(3–4):411–436

    Article  MathSciNet  MATH  Google Scholar 

  10. Mulansky B, Neamtu M (1998) Interpolation and approximation from convex sets. J Approx Theory 92:82–100

    Article  MathSciNet  MATH  Google Scholar 

  11. Rubinov AM (2000) Abstract convex analysis and global optimization. Kluwer, Boston Dordrecht London

    Google Scholar 

  12. Rubinov AM, Gasimov RN (2004) Scalarization and nonlinear scalar duality for vector optimization with preferences that are not necessarily a pre-order relation. J Glob Optim 29:455–477

    Article  MathSciNet  Google Scholar 

  13. Rubinov AM, Singer I (2001) Topical and sub-topical functions, downward sets and abstract convexity. Optimization 50:307–351

    Article  MathSciNet  MATH  Google Scholar 

  14. Rubinov AM, Singer I (2000) Best approximation by normal and co-normal sets. J Approx Theory 107:212–243

    Article  MathSciNet  MATH  Google Scholar 

  15. Singer I (1997) Abstract convex analysis. Wiley‐Interscience, New York

    MATH  Google Scholar 

  16. Singer I (1970) Best approximation in normed linear spaces by elements of linear subspaces. Springer, New York

    MATH  Google Scholar 

  17. Jeyakumar V, Mohebi H (2005) A global approach to nonlinearly constrained best approximation. J Numer Funct Anal Optim 26(2):205–227

    Article  MathSciNet  MATH  Google Scholar 

  18. Jeyakumar V, Mohebi H (2005) Limiting and ε-subgradient characterizations of constrained best approximation. J Approx Theory 135:145–159

    Article  MathSciNet  MATH  Google Scholar 

  19. Vlasov LP (1967) Chebyshev sets and approximatively convex sets. Math Notes 2:600–605

    MathSciNet  Google Scholar 

  20. Vlasov LP (1973) Approximative properties of sets in normed linear spaces. Russ Math Surv 28:1–66

    Article  MathSciNet  MATH  Google Scholar 

  21. Vulikh BZ (1967) Introduction to the theory of partially ordered vector spaces. Wolters-Noordhoff, Groningen

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag

About this entry

Cite this entry

Mohebi, H. (2008). Best Approximation in Ordered Normed Linear Spaces . In: Floudas, C., Pardalos, P. (eds) Encyclopedia of Optimization. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-74759-0_34

Download citation

Publish with us

Policies and ethics