Skip to main content

Modeling Languages in Optimization: A New Paradigm

  • Reference work entry
Encyclopedia of Optimization

Article Outline

Keywords

Why Declarative Representation

Algebraic Modeling Languages

Second Generation Modeling Languages

Modeling Language and Constraint Logic Programming

Modeling Examples

  Sorting

  The n-Queens Problem

  A Two-Person Game

  Equal Circles in a Square

  The (Fractional) Cutting-Stock Problem

Conclusion

See also

References

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bisschop J (1998) AIMMS, the modeling system. Paragon Decision Techn, Haarlem, www.paragon.nl

    Google Scholar 

  2. Brooke A, Kendrick D, Meeraus A (1988) GAMS. A user's guide. Sci Press, Marrickville

    Google Scholar 

  3. Chvátal V (1973) Linear programming. Freeman, New York

    Google Scholar 

  4. Feigenbaum EA (1996) How the ‘what’ becomes the ‘how’. Comm ACM 39(5):97–104

    Article  MathSciNet  Google Scholar 

  5. Floyd RW, Beigel R (1994) The language of machines, an introduction to computability and formal languages. Computer Sci Press, Rockville

    Google Scholar 

  6. Fourer R (1998) Extending a general-purpose algebraic modeling language to combinatorial optimization: A logic programming approach. In: Woodruff DL (ed) Advances in Computational and Stochastic Optimization, Logic Programming, and Heuristic Search: Interfaces in Computer Sci and Oper Res. Kluwer, Dordrecht, pp 31–74

    Google Scholar 

  7. Fourer R, Gay DM, Kernighan BW (1993) AMPL, a modeling language for mathematical programming. Sci Press, Marrickville

    Google Scholar 

  8. GAY DM (1996) Automatically finding and exploiting partially separable structure in nonlinear programming problems. AT&T Bell Lab Murray Hill, New Jersey

    Google Scholar 

  9. Hofstadter DR (1988) Metamagicum, Fragen nach der Essenz von Geist und Struktur. Klett-Cotta, Stuttgart

    Google Scholar 

  10. Hürlimann T (1997) Computer-based mathematical modeling. Habilitations Script. Fac Economic and Social Sci, Inst Informatics, Univ Fribourg

    Google Scholar 

  11. Hürlimann T (1998) An efficient logic-to-IP translation procedure. Working Paper, Inst Informatics, Univ Fribourg, ftp://ftp-iiuf.unifr.ch/pub/lpl/doc/APMOD1.pdf

    Google Scholar 

  12. Hürlimann T (1998) Reference manual for the LPL modeling language. Working Paper, version 4.30. Inst Informatics, Univ. Fribourg, Fribourg, ftp://ftp-iiuf.unifr.ch/pub/lpl/doc/Manual.ps

    Google Scholar 

  13. Jaffar J, Maher MJ (1995) Constraint logic programming: A survey. Handbook Artificial Intelligence and Logic Programming. Oxford Univ Press, Oxford

    Google Scholar 

  14. Louden KC (1993) Programming languages – Principles and practice. PWS/Kent Publ, Boston

    Google Scholar 

  15. Maranas CD, Floudas CA, Pardalos PM (1993) New results in the packing of equal circles in a square. Dept Chemical Engin, Princeton Univ, Princeton

    Google Scholar 

  16. Murtagh BA, Saunders MA (1987) MINOS 5.0, user guide. Systems Optim Lab, Dept Oper Res, Stanford Univ, Stanford

    Google Scholar 

  17. ILOG SA (1997) ILOG solver 4.0 user's manual; ILOG solver 4.0 reference manual. ILOG, Mountain View

    Google Scholar 

  18. Schrage L (1998) Optimization modeling with LINGO. Lindo Systems, Chicago, www.lindo.com

    Google Scholar 

  19. Smolka G (1995) The Oz programming model. In: van Leeuwen J (ed) Computer Sci Today, 1000 of Computer Sci. Springer, Berlin, pp 324–343

    Chapter  Google Scholar 

  20. Sosic R, Gu J (1990) A polynomial time algorithm for the n-queens problem. SIGART Bull 1(3):7–11

    Article  Google Scholar 

  21. Sosic R, Gu J (1991) 3,000,000 queens in less than one minute. SIGART Bull 2(1):22–24

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag

About this entry

Cite this entry

Hürlimann, T. (2008). Modeling Languages in Optimization: A New Paradigm . In: Floudas, C., Pardalos, P. (eds) Encyclopedia of Optimization. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-74759-0_399

Download citation

Publish with us

Policies and ethics