Skip to main content

Bilevel Programming Framework for Enterprise-Wide Process Networks Under Uncertainty

  • Reference work entry
Encyclopedia of Optimization

Article Outline

Introduction

Formulation

  Bilevel Programming

  Bilevel Programming with Multi-Followers

Applications

Cases

  Global Optimum of a Bilevel Programming Problem

  Bilevel Programming Problem

  Bilevel Programming Problem with Multi-Followers

  Bilevel Programming with Uncertainty

References

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Acevedo J, Pistikopoulos EN (1997) A multiparametric programming approach for linear process engineering problems under uncertainty. Ind Eng Chem Res 36:717–728

    Article  Google Scholar 

  2. Başar T, Olsder GJ (1982) Dynamic Noncooperative Game Theory. Academic Press, London

    MATH  Google Scholar 

  3. Cao D, Chen M (2006) Capacitated plant selection in a decentralized manufacturing environment: a bilevel optimization approach. Eur J Oper Res 169(1):97–110

    Article  MathSciNet  MATH  Google Scholar 

  4. Clark PA (1990) Bilevel programming for steady-state chemical process design – ii. performance study for nondegenerate problems. Comput Chem Eng 14(1):99–109

    Article  Google Scholar 

  5. Clark PA, Westerberg AW (1990) Bilevel programming for steady-state chemical process design – i. fundamentals and algorithms. Comput Chem Eng 14(1):87–97

    Article  Google Scholar 

  6. Dempe S (2003) Annotated bibliography on bilevel programming and mathematical programs with equilibrium constraints. Optimization 52(3):33–359

    Article  MathSciNet  Google Scholar 

  7. Dempe S, Kalashnikov V, Ríos-Mercado RZ (2005) Discrete bilevel programming: Application to a natural gas cash-out problem. Eur J Oper Res 166:469–488

    Article  MATH  Google Scholar 

  8. Deng X (1998) Complexity issues in bilevel linear programming. In: Multilevel optimization: algorithms and applications. Kluwer, Dordrecht, pp 149–164

    Google Scholar 

  9. Dua V, Bozinis A, Pistikopoulos EN (2002) A multiparametric programming approach for mixed-integer quadratic engineering problems. Comput Chem Eng 26:715–733

    Article  Google Scholar 

  10. Dua V, Pistikopoulos EN (2000) An algorithm for the solution of multiparametric mixed integer linear programming problems. Ann Oper Res 99:123–139

    Article  MathSciNet  MATH  Google Scholar 

  11. Dua V (2000) Parametric programming techniques for process engineering problems under uncertainty. PhD thesis, Department of Chemical Engineering and Chemical Technology Imperial College of Science, Technology and Medicine London, London

    Google Scholar 

  12. Evans GW (1984) An overview of thecniques for solving multiobjective mathematical programs. Manag Sci 30(11):1268–1282

    MATH  Google Scholar 

  13. Faísca NP, Dua V, Saraiva PM, Rustem B, Pistikopoulos EN (2007) Parametric global optimisation for bilevel programming. J Glob Optim 38(4):609–623

    Article  MATH  Google Scholar 

  14. Faísca NP, Saraiva PM, Rustem B, Pistikopoulos EN (2007) A multi-parametric programming approach for multi-level hierarchical and decentralised optimisation problems. Comput Manag Sci (in press)

    Google Scholar 

  15. Fiacco AV (1976) Sensitivity analysis for nonlinear programming using penalty methods. Math Program 10:287–311

    Google Scholar 

  16. Fiacco AV (1983) Introduction to sensitivity and stability analysis in nonlinear programming. Academic Press, New York

    MATH  Google Scholar 

  17. Floudas CA (2000) Deterministic global optimization. Kluwer, Dordrecht

    Google Scholar 

  18. Floudas CA, Pardalos PM, Adjiman CS, Esposito WR, Gümüş ZH, Harding ST, Klepeis JL, Meyer CA, Schweiger CA (1999) Handbook of test problems in local and global optimization. Kluwer, Dordrecht

    MATH  Google Scholar 

  19. Fortuny-Amat J, McCarl B (1981) A representation and economic interpretation of a two-level programming problem. J Oper Res Soc 32(9):783–792

    Article  MathSciNet  MATH  Google Scholar 

  20. Gümüş ZH, Floudas CA (2001) Global optimization of nonlinear bilevel programming problems. J Glob Optim 20(1):1–31

    Google Scholar 

  21. Hansen P, Jaumard B, Savard G (1992) New brach-and-bound rules for linear bilevel programming. SIAM J Sci Stat Comput 13:1194–1217

    Article  MathSciNet  MATH  Google Scholar 

  22. Lai Y (1996) Hierarchical optimization: a satisfactory solution. Fuzzy Sets Syst 77:321–335

    Article  MATH  Google Scholar 

  23. LeBlanc LJ, Boyce DE (1985) A bilevel programming algorithm for exact solution of network design problem with user-optimal flows. Transp Res B Methodol 20:259–265

    Article  MathSciNet  Google Scholar 

  24. Liu B (1998) Stackelberg-nash equilibrium for multilevel programming with multiple followers using genetic algorithms. Comput Math Appl 36(7):79–89

    Article  MathSciNet  MATH  Google Scholar 

  25. Migdalas A, Pardalos PM, Varbrand P (1997) Multilevel optimization: algorithm and applications. Kluwer, Dordrecht

    Google Scholar 

  26. Ryu J, Dua V, Pistikopoulos EN (2004) A bilevel programming framework for enterprise-wide process networks under uncertainty. Comput Chem Eng 28:1121–1129

    Article  Google Scholar 

  27. Ryu J-H (2003) Design and operation of enterprise-wide process networks under uncertainty. PhD thesis, Department of Chemical Engineering and Chemical Technology Imperial College of Science, Technology and Medicine London, London

    Google Scholar 

  28. Shih H, Lai Y, Lee ES (1996) Fuzzy approach for multi-level programming problems. Comput Oper Res 23(1):73–91

    Article  MathSciNet  MATH  Google Scholar 

  29. Shimizu K, Ishizuka Y, Bard JF (1997) Nondifferentiable and two-level mathematical programming. Kluwer, Boston

    MATH  Google Scholar 

  30. Tabucanon MT (1988) Multiple Criteria Decision Making in Industry. Elsevier, Amsterdam

    Google Scholar 

  31. Vicente LN, Savard G, Júdice J (1994) Descent approaches for quadratic bilevel programming. J Optim Theor Appl 81:379–399

    Article  MATH  Google Scholar 

  32. Vicente L (1992) Bilevel programming. Master's thesis, Department of Mathematics, University of Coimbra, Coimbra

    Google Scholar 

  33. Visweswaran V, Floudas MG, Ierapetritou CA, Pistikopoulos EN (1996) A decomposition-based global optimization approach for solving bilevel linear and quadratic programs. In: State of the art in global optimization. Kluwer, Dordrecht, pp 139–162

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag

About this entry

Cite this entry

Pistikopoulos, E.N., Faísca, N.P., Saraiva, P.M., Rustem, B. (2008). Bilevel Programming Framework for Enterprise-Wide Process Networks Under Uncertainty . In: Floudas, C., Pardalos, P. (eds) Encyclopedia of Optimization. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-74759-0_42

Download citation

Publish with us

Policies and ethics