Skip to main content

Nondifferentiable Optimization: Cutting Plane Methods

  • Reference work entry
Encyclopedia of Optimization

Article Outline

Keywords

A Generic Cutting Plane Algorithm

Kelley's Cutting Plane Method

Center of Gravity Method

Largest Inscribed Sphere Method

Volumetric Method

Bundle Methods

Analytic Center Cutting Plane Method (ACCPM)

Concluding Remarks

See also

References

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Atkinson DS, Vaidya PM (1995) A cutting plane algorithm that uses analytic centers. Math Program B 69:1–43

    MathSciNet  Google Scholar 

  2. Bahn O, Goffin JL, Vial JP, du Merle O (1994) Implementation and behavior of an interior point cutting plane algorithm for convex programming: An application to geometric programming. Discrete Appl Math 49:3–23

    MathSciNet  MATH  Google Scholar 

  3. Bahn O, Merle OD, Goffin JL, Vial JP (1995) A cutting plane method from analytic centers for stochastic programming. Math Program B 69:45–73

    Google Scholar 

  4. Benders JF (1962) Partitioning procedures for solving mixed-variables programming problems. Numerische Math 4:238–252

    MathSciNet  MATH  Google Scholar 

  5. Cheney W, Goldstein AA (1959) Newton's method for convex programming and Chebyshev approximation. Numerische Math 1–5:253–268

    MathSciNet  Google Scholar 

  6. Clarke FH (1989) Optimization and nonsmooth analysis. Les Publ. CRM, Montreal

    MATH  Google Scholar 

  7. Dantzig GB, Wolfe P (1960) Decomposition principle for linear programs. Oper Res 8:101–111

    MATH  Google Scholar 

  8. Dantzig GB, Wolfe P (1961) The decomposition algorithm for linear programming. Econometrica 29(4):767–778

    MathSciNet  MATH  Google Scholar 

  9. Denault M, Goffin J-L (1997) On a primal-dual analytic center cutting plane method for variational inequalities. GERAD Techn Report G-97-56

    Google Scholar 

  10. Denault M, Goffin J-L (1998) Variational inequalities with quadratic cuts. GERAD Techn Report G-98-69

    Google Scholar 

  11. Elzinga J, Moore TG (1975) A central cutting plane algorithm for the convex programming problem. Math Program 8:134–145

    MathSciNet  MATH  Google Scholar 

  12. Fiacco AV, McCormick GP (1968) Nonlinear programming: Sequential unconstrained minimization techniques. Wiley, New York. Reprint: SIAM Classics Appl Math, vol 4, 1990

    MATH  Google Scholar 

  13. Fisher ML (1981) The Lagrangian relaxation method for solving integer programming problems. Managem Sci 27:1–18

    MATH  Google Scholar 

  14. Geoffrion AM (1972) Generalized Benders decomposition. J Optim Th Appl 10:237–260

    MathSciNet  MATH  Google Scholar 

  15. Geoffrion AM (1974) Lagrangean relaxation for integer programming. Math Program Stud 2:82–114

    MathSciNet  Google Scholar 

  16. de Ghellinck G, Vial JP (1986) A polynomial Newton method for linear programming. Algorithmica 1:425–453

    MathSciNet  MATH  Google Scholar 

  17. Goffin J-L, Gondzio J, Sarkissian R, Vial J-P (1997) Solving nonlinear multicommodity flow problem by the analytic centre cutting plane method. Math Program B 76:131–154

    MathSciNet  Google Scholar 

  18. Goffin J-L, Haurie A, Vial J-P (1992) Decomposition and nondifferentiable optimization with the projective algorithm. Managem Sci 38(2):284–302

    MATH  Google Scholar 

  19. Goffin J-L, Haurie A, Vial J-P, Zhu DL (1993) Using central prices in the decomposition of linear programs. Europ J Oper Res 64:393–409

    MATH  Google Scholar 

  20. Goffin J-L, Luo Z-Q, Ye Y (1996) Complexity analysis of an interior cutting plane method for convex feasibility problems. SIAM J Optim 6:638–652

    MathSciNet  MATH  Google Scholar 

  21. Goffin J-L, Vial J-P (1990) Cutting planes and column generation techniques with the projective algorithm. J Optim Th Appl 65:409–429

    MathSciNet  MATH  Google Scholar 

  22. Goffin J-L, Vial J-P (1993) On the computation of weighted analytic centers and dual ellipsoids with the projective algorithm. Math Program 60:81–92

    MathSciNet  Google Scholar 

  23. Goffin J-L, Vial J-P (1998) Interior point methods for nondifferentiable optimization. In: Kishka P, Lorenz HW, Derigs U, Domschke W, Kleinschmidt P, Moehring R (eds) Operations Research Proc. 1997. Springer, Berlin, pp 35–49

    Google Scholar 

  24. Goffin J-L, Vial J-P (1998) Multiple cuts in the analytic center cutting plane method. HEC/Logilab Techn Report 98.10 and G-98-26, Dept. Management Stud Univ Geneva

    Google Scholar 

  25. Gondzio J, du Merle O, Sarkissian R, Vial JP (1994) ACCPM-A library for convex optimization based on analytic centre cutting plane method. Europ J Oper Res 94:206–211

    Google Scholar 

  26. Karmarkar NK (1984) A new polynomial-time algorithm for linear programming. Combinatorica 4:373–395

    MathSciNet  MATH  Google Scholar 

  27. Kelley JE (1960) The cutting plane method for solving convex programs. J SIAM 8:703–712

    MathSciNet  Google Scholar 

  28. Kiwiel KC (1990) Proximity control in Bundle methods for convex nondifferentiable optimization. Math Program 46:105–122

    MathSciNet  MATH  Google Scholar 

  29. Lasdon L (1970) Optimization theory for large scale systems. MacMillan, New York

    Google Scholar 

  30. Lemaréchal C (1978) Bundle methods in nonsmooth optimization. In: Lemarechal C, Mifflin R (eds) Nonsmooth Optimization, Proc. IIASA Workshop, March 28–April 8 1977. Pergamon, Oxford

    Google Scholar 

  31. Lemaréchal C, Nemrirovskii A, Nesterov Y (1995) New variants of bundle methods. Nonsmooth Optim, Math Program 69:111–147

    Google Scholar 

  32. Levin AY (1965) On an algorithm for the minimization of convex functions over convex functions. Soviet Math Dokl 6:286–290

    Google Scholar 

  33. du Merle O, Hansen P, Jaumard B, Mladenovic N (1997) An interior point algorithm for minimum sum of squares clustering. GERAD Techn Report G97-53

    Google Scholar 

  34. Nemhauser GL, Widhelm WB (1971) A modified linear program for columnar methods in mathematical programming. Oper Res 19:1051–1060

    MathSciNet  MATH  Google Scholar 

  35. Nemirovskii AS, Yudin DB (1983) Problem complexity and method efficiency in optimization. Wiley, New York

    Google Scholar 

  36. Nesterov Y (1996) Cutting plane methods from analytic centers: efficiency estimates. Math Program B 69:149–176

    MathSciNet  Google Scholar 

  37. Roos C, Terlaky T, Vial J-P (1997) Interior point methods: Theory and algorithms. Springer, Berlin

    MATH  Google Scholar 

  38. Shor NZ (1978) Subgradient methods: A survey of Soviet research. In: Lemaréchal C, Mifflin R (eds) Nonsmooth optimization: Proc. IIASA workshop, March 28–April 8 1977. Pergamon, Oxford

    Google Scholar 

  39. Shor NZ (1985) Minimization methods for non-differentiable functions. Springer, Berlin

    MATH  Google Scholar 

  40. Sonnevend G (1985) An analytical center for polyhedrons and new classes of global algorithms for linear (smooth, convex) programming. Lecture Notes Control Inform Sci, vol 84. Springer, Berlin, pp 866–876

    Google Scholar 

  41. Sonnevend G (1988) New algorithms in convex programming based on a notion of centre (for systems of analytic inequalities) and on rational extrapolation. In: Hoffmann KH, Hiriat-Urruty JB, Lemaréchal C, Zowe J (eds) Trends in Mathematical Optimization; Proc. 4th French–German Conf. Optimization, Irsee, April 1986. Internat Ser Numer Math. Birkhäuser, Basel, pp 311–327

    Google Scholar 

  42. Sonnevend G (1989) Applications of the notion of analytic center in approximation (estimation) problem. J Comput Appl Math 28:349–358

    MathSciNet  MATH  Google Scholar 

  43. Vaidya P (1996) A new algorithm for minimizing convex functions over convex sets. Math Program 73:291–341

    MathSciNet  Google Scholar 

  44. Wolfe P (1975) A method of conjugate subgradients for minimizing nondifferentiable functions. Math Program Stud 3:145–173

    MathSciNet  Google Scholar 

  45. Ye Y (1992) A potential reduction algorithm allowing column generation. SIAM J Optim 2:7–20

    MathSciNet  MATH  Google Scholar 

  46. Ye Y (1997) Interior point algorithms: Theory and analysis. Wiley, New York

    MATH  Google Scholar 

  47. Zangwill WI (1969) Nonlinear programming: A unified approach. Prentice-Hall, Englewood Cliffs

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag

About this entry

Cite this entry

Elhedhli, S., Goffin, JL., Vial, JP. (2008). Nondifferentiable Optimization: Cutting Plane Methods . In: Floudas, C., Pardalos, P. (eds) Encyclopedia of Optimization. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-74759-0_446

Download citation

Publish with us

Policies and ethics