Article Outline
Keywords
A Generic Cutting Plane Algorithm
Kelley's Cutting Plane Method
Center of Gravity Method
Largest Inscribed Sphere Method
Volumetric Method
Bundle Methods
Analytic Center Cutting Plane Method (ACCPM)
Concluding Remarks
See also
References
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Atkinson DS, Vaidya PM (1995) A cutting plane algorithm that uses analytic centers. Math Program B 69:1–43
Bahn O, Goffin JL, Vial JP, du Merle O (1994) Implementation and behavior of an interior point cutting plane algorithm for convex programming: An application to geometric programming. Discrete Appl Math 49:3–23
Bahn O, Merle OD, Goffin JL, Vial JP (1995) A cutting plane method from analytic centers for stochastic programming. Math Program B 69:45–73
Benders JF (1962) Partitioning procedures for solving mixed-variables programming problems. Numerische Math 4:238–252
Cheney W, Goldstein AA (1959) Newton's method for convex programming and Chebyshev approximation. Numerische Math 1–5:253–268
Clarke FH (1989) Optimization and nonsmooth analysis. Les Publ. CRM, Montreal
Dantzig GB, Wolfe P (1960) Decomposition principle for linear programs. Oper Res 8:101–111
Dantzig GB, Wolfe P (1961) The decomposition algorithm for linear programming. Econometrica 29(4):767–778
Denault M, Goffin J-L (1997) On a primal-dual analytic center cutting plane method for variational inequalities. GERAD Techn Report G-97-56
Denault M, Goffin J-L (1998) Variational inequalities with quadratic cuts. GERAD Techn Report G-98-69
Elzinga J, Moore TG (1975) A central cutting plane algorithm for the convex programming problem. Math Program 8:134–145
Fiacco AV, McCormick GP (1968) Nonlinear programming: Sequential unconstrained minimization techniques. Wiley, New York. Reprint: SIAM Classics Appl Math, vol 4, 1990
Fisher ML (1981) The Lagrangian relaxation method for solving integer programming problems. Managem Sci 27:1–18
Geoffrion AM (1972) Generalized Benders decomposition. J Optim Th Appl 10:237–260
Geoffrion AM (1974) Lagrangean relaxation for integer programming. Math Program Stud 2:82–114
de Ghellinck G, Vial JP (1986) A polynomial Newton method for linear programming. Algorithmica 1:425–453
Goffin J-L, Gondzio J, Sarkissian R, Vial J-P (1997) Solving nonlinear multicommodity flow problem by the analytic centre cutting plane method. Math Program B 76:131–154
Goffin J-L, Haurie A, Vial J-P (1992) Decomposition and nondifferentiable optimization with the projective algorithm. Managem Sci 38(2):284–302
Goffin J-L, Haurie A, Vial J-P, Zhu DL (1993) Using central prices in the decomposition of linear programs. Europ J Oper Res 64:393–409
Goffin J-L, Luo Z-Q, Ye Y (1996) Complexity analysis of an interior cutting plane method for convex feasibility problems. SIAM J Optim 6:638–652
Goffin J-L, Vial J-P (1990) Cutting planes and column generation techniques with the projective algorithm. J Optim Th Appl 65:409–429
Goffin J-L, Vial J-P (1993) On the computation of weighted analytic centers and dual ellipsoids with the projective algorithm. Math Program 60:81–92
Goffin J-L, Vial J-P (1998) Interior point methods for nondifferentiable optimization. In: Kishka P, Lorenz HW, Derigs U, Domschke W, Kleinschmidt P, Moehring R (eds) Operations Research Proc. 1997. Springer, Berlin, pp 35–49
Goffin J-L, Vial J-P (1998) Multiple cuts in the analytic center cutting plane method. HEC/Logilab Techn Report 98.10 and G-98-26, Dept. Management Stud Univ Geneva
Gondzio J, du Merle O, Sarkissian R, Vial JP (1994) ACCPM-A library for convex optimization based on analytic centre cutting plane method. Europ J Oper Res 94:206–211
Karmarkar NK (1984) A new polynomial-time algorithm for linear programming. Combinatorica 4:373–395
Kelley JE (1960) The cutting plane method for solving convex programs. J SIAM 8:703–712
Kiwiel KC (1990) Proximity control in Bundle methods for convex nondifferentiable optimization. Math Program 46:105–122
Lasdon L (1970) Optimization theory for large scale systems. MacMillan, New York
Lemaréchal C (1978) Bundle methods in nonsmooth optimization. In: Lemarechal C, Mifflin R (eds) Nonsmooth Optimization, Proc. IIASA Workshop, March 28–April 8 1977. Pergamon, Oxford
Lemaréchal C, Nemrirovskii A, Nesterov Y (1995) New variants of bundle methods. Nonsmooth Optim, Math Program 69:111–147
Levin AY (1965) On an algorithm for the minimization of convex functions over convex functions. Soviet Math Dokl 6:286–290
du Merle O, Hansen P, Jaumard B, Mladenovic N (1997) An interior point algorithm for minimum sum of squares clustering. GERAD Techn Report G97-53
Nemhauser GL, Widhelm WB (1971) A modified linear program for columnar methods in mathematical programming. Oper Res 19:1051–1060
Nemirovskii AS, Yudin DB (1983) Problem complexity and method efficiency in optimization. Wiley, New York
Nesterov Y (1996) Cutting plane methods from analytic centers: efficiency estimates. Math Program B 69:149–176
Roos C, Terlaky T, Vial J-P (1997) Interior point methods: Theory and algorithms. Springer, Berlin
Shor NZ (1978) Subgradient methods: A survey of Soviet research. In: Lemaréchal C, Mifflin R (eds) Nonsmooth optimization: Proc. IIASA workshop, March 28–April 8 1977. Pergamon, Oxford
Shor NZ (1985) Minimization methods for non-differentiable functions. Springer, Berlin
Sonnevend G (1985) An analytical center for polyhedrons and new classes of global algorithms for linear (smooth, convex) programming. Lecture Notes Control Inform Sci, vol 84. Springer, Berlin, pp 866–876
Sonnevend G (1988) New algorithms in convex programming based on a notion of centre (for systems of analytic inequalities) and on rational extrapolation. In: Hoffmann KH, Hiriat-Urruty JB, Lemaréchal C, Zowe J (eds) Trends in Mathematical Optimization; Proc. 4th French–German Conf. Optimization, Irsee, April 1986. Internat Ser Numer Math. Birkhäuser, Basel, pp 311–327
Sonnevend G (1989) Applications of the notion of analytic center in approximation (estimation) problem. J Comput Appl Math 28:349–358
Vaidya P (1996) A new algorithm for minimizing convex functions over convex sets. Math Program 73:291–341
Wolfe P (1975) A method of conjugate subgradients for minimizing nondifferentiable functions. Math Program Stud 3:145–173
Ye Y (1992) A potential reduction algorithm allowing column generation. SIAM J Optim 2:7–20
Ye Y (1997) Interior point algorithms: Theory and analysis. Wiley, New York
Zangwill WI (1969) Nonlinear programming: A unified approach. Prentice-Hall, Englewood Cliffs
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2008 Springer-Verlag
About this entry
Cite this entry
Elhedhli, S., Goffin, JL., Vial, JP. (2008). Nondifferentiable Optimization: Cutting Plane Methods . In: Floudas, C., Pardalos, P. (eds) Encyclopedia of Optimization. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-74759-0_446
Download citation
DOI: https://doi.org/10.1007/978-0-387-74759-0_446
Publisher Name: Springer, Boston, MA
Print ISBN: 978-0-387-74758-3
Online ISBN: 978-0-387-74759-0
eBook Packages: Mathematics and StatisticsReference Module Computer Science and Engineering