Skip to main content

Predictive Method for Interhelical Contacts in Alpha-Helical Proteins

  • Reference work entry
Encyclopedia of Optimization

Article Outline

Keywords

Introduction

Methods

  Dataset Selection

  Probability Generation and Probability Sets

  Interhelical Contact Prediction Model

Applications

References

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 2,500.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 2,499.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Adjiman CS, Androulakis IP, Floudas CA (1998) A global optimization method, alphaBB, for general twice-differentiable constrained NLPs - ii. implementation and computational results. Comp Chem Eng 22:1159–1179

    Article  Google Scholar 

  2. Adjiman CS, Dallwig S, Floudas CA, Neumaier A (1998) A global optimization method, alphaBB, for general twice-differentiable constrained NLPs - i. theoretical advances. Comp Chem Eng 22:1137–1158

    Article  Google Scholar 

  3. Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov IN, Bourne PE (2000) The protein data bank. Nucleic Acids Res 2000 28:235–242

    Google Scholar 

  4. Creighton TE (1993) Proteins: Structures and Molecular Properties. W.H. Freeman and Company: New York

    Google Scholar 

  5. Czaplewski C, Liwo A, Pillardy J, Oldziej S, Scheraga HA (2004) Improved conformational space annealing method to treat beta-structure with the UNRES force-field and to enhance scalability of parallel implementation. Polymer 45:677–686

    Article  Google Scholar 

  6. Czaplewski C, Oldziej S, Liwo A, Scheraga HA (2004) Prediction of the structures of proteins with the UNRES force field, including dynamic formation and breaking of disulfide bonds. Protein Eng Des Sel 17:29–36

    Article  Google Scholar 

  7. DeLano WL (2002) The PyMol Molecular Graphics System. San Carlos, CA USA: DeLano Scientific http://www.pymol.org

  8. Eyrich VA, Standley DM, Felts AK, Friesner RA (1999) Protein tertiary structure prediction using a branch and bound algorithm. Prot Struct Funct Bioinf 35:41–57

    Article  Google Scholar 

  9. Eyrich VA, Standley DM, Friesner RA (1999) Prediction of protein tertiary structure to low resolution: Performace for a large and structurally diverse test set. J Mol Biol 288:725–742

    Article  Google Scholar 

  10. Floudas CA (1995) Nonlinear and Mixed-integer Optimization: Fundamentals and Applications. Oxford University Press, New York

    MATH  Google Scholar 

  11. Floudas CA (2000) Deterministic Global Optimization : Theory, Methods and Applications. Nonconvex Optimization and its Applications. Kluwer, Boston

    Google Scholar 

  12. Floudas CA (2005) Research challenges, opportunities and synergism in systems engineering and computational biology. AIChE J 51:1872–1884

    Article  Google Scholar 

  13. Floudas CA, Fung HK, McAllister SR, Mönnigmann M, Rajgaria R (2006) Advances in protein structure prediction and de novo protein design: A review. Chem Eng Sci 61:966–988

    Article  Google Scholar 

  14. Hobohm U, Sander C (1994) Enlarged representative set of protein structures. Prot Sci 3:522–524

    Article  Google Scholar 

  15. Huang ES, Samudrala R, Ponder JW (1999) Ab initio fold prediction of small helical proteins using distance geometry and knowledge-based scoring functions. J Mol Biol 290:267–281

    Article  Google Scholar 

  16. Klepeis JL, Floudas CA (2002) Ab initio prediction of helical segments in polypeptides. J Comput Chem 23:245–266

    Article  Google Scholar 

  17. Klepeis JL, Floudas CA (2003) Ab initio tertiary structure prediction of proteins. J Glob Optim 25:113–140

    Article  MathSciNet  MATH  Google Scholar 

  18. Klepeis JL, Floudas CA (2003) ASTRO-FOLD: A combinatorial and global optimization framework for ab initio prediction of three-dimensional structures of proteins from the amino acid sequence. Biophys J 85:2119–2146

    Google Scholar 

  19. Klepeis JL, Pieja MT, Floudas CA (2003) A new class of hybrid global optimization algorithms for peptide structure prediction: Integrated hybrids. Comp Phys Commun 151:121–140

    Article  Google Scholar 

  20. Klepeis JL, Pieja MT, Floudas CA (2003) Hybrid global optimization algorithms for protein structure prediction : Alternating hybrids. Biophys J 84:869–882

    Google Scholar 

  21. Klepeis JL, Wei YN, Hecht MH, Floudas CA (2005) Ab initio prediction of the three-dimensional structure of a de novo designed protein: A double-blind case study. Prot Struct Funct Bioinf 58:560–570

    Article  Google Scholar 

  22. Lau KF, Dill KA (1990) Theory for protein mutability and biogenesis. Proc Natl Acad Sci USA 87:638–642

    Article  Google Scholar 

  23. Lee J, Kim SY, Joo K, Kim I, Lee J (2004) Prediction of protein tertiary strucure using PROFESY, a novel method based on fragment assembly and conformational space annealing. Prot Struct Funct Bioinf 56:704–714

    Article  Google Scholar 

  24. Lee J, Pillardy J, Czaplewski C, Arnautova Y, Ripoll DR, Liwo A, Gibson KD, Wawak RJ, Scheraga HA (2000) Efficient parallel algorithms in global optimization of potential energy functions for peptides, proteins and crystals. Comp Phys Commun 128:399–411

    Article  MATH  Google Scholar 

  25. Lee J, Scheraga HA (1999) Conformational space annealing by parallel computations: Extensive conformational search of met-enkephalin and the 20-residue membrane-bound portion of melittin. Int J Quantum Chem 75:255–265

    Article  Google Scholar 

  26. Lee J, Scheraga HA, Rackovsky S (1997) New optimization method for conformational energy calculations on polypeptides : Conformational space annealing. J Comput Chem 18:1222–1232

    Article  Google Scholar 

  27. Lee J, Scheraga HA, Rackovsky S (1998) Conformational analysis of the 20-residue membrane-bound portion of melittin by conformational space annealing. Biopolymers 46:103–115

    Article  Google Scholar 

  28. Liwo A, Arlukowicz P, Czaplewski C, Oldziej S, Pillardy J, Scheraga HA (2002) A method for optimizing potential-energy functions by hieracrchical design of the potential-energy landscape: Application to the UNRES force field. Proc Natl Acad Sci USA 99:1937–1942

    Article  Google Scholar 

  29. Liwo A, Czaplewski C (2001) Cumulant-based expressions for the multibody terms for the correlation between local and electrostatic interactions in the united-residue force field. J Chem Phys 115:2323–2347

    Article  Google Scholar 

  30. Liwo A, Oldziej S, Pincus MR, Wawak RJ, Rackovsky S, Scheraga HA (1997) A united-residue force field for off-lattice protein structure simulations. I. Functional forms and parameters of long-range side-chain interaction potentials from protein crystal data. J Comput Chem 18:849–873

    Article  Google Scholar 

  31. Liwo A, Pincus MR, Wawak RJ, Rackovsky S, Oldziej S, Scheraga HA (1997) A united-residue force field for off-lattice protein structure simulations. II. Parameterization of short-range interactions and determination of weights of energy terms by z-score optimization. J Comput Chem 18:874–887

    Article  Google Scholar 

  32. McAllister SR, Mickus BE, Klepeis JL, Floudas CA (2006) A novel approach for alpha-helical topology prediction in globular proteins: Generation of interhelical restraints. Prot Struct Funct Bioinf 65:930–952

    Article  Google Scholar 

  33. Orengo CA, Michie AD, Jones S, Jones DT, Swindells MB, Thornton JM (1997) CATH - a hierarchic classification of protein domain structures. Structure 5:1093–1108

    Article  Google Scholar 

  34. Pillardy J, Czaplewski C, Liwo A, Wedemeyer WJ, Lee J, Ripoll DR, Arlukowicz P, Oldziej S, Arnautova EA, Scheraga HA (2001) Development of physics-based energy functions that predict medium resolution structure for proteins of α, β and α/β structural classes. J Phys Chem B 105:7299–7311

    Article  Google Scholar 

  35. Reidhaar-Olson JF, Sauer RT (1988) Combinatorial cassette mutagenesis as a probe of the informational content of protein sequences. Science 241:53–57

    Article  Google Scholar 

  36. Ripoll D, Liwo A, Scheraga HA (1998) New developments of the electrostatically driven monte carlo method: Tests on the membrane-bound portion of melittin. Biopolymers 46:117–126

    Article  Google Scholar 

  37. Rohl CA, Strauss CEM, Chivian D, Baker D (2004) Modeling structurally variable regions in homologous proteins with Rosetta. Prot Struct Funct Bioinf 55:656–677

    Article  Google Scholar 

  38. Simons KT, Kooperberg C, Huang C, Baker D (1997) Assembly of protein tertiary structures from fragments with similar local sequences using simulated annealing and Bayesian scoring functions. J Mol Biol 268:209–225

    Article  Google Scholar 

  39. Simons KT, Ruczinki I, Kooperberg C, Fox BA, Bystroff C, Baker D (1999) Improved recognition of native-like structures using a combination of sequence-dependent and sequence-independent features of proteins. Prot Struct Funct Bioinf 34:82–95

    Article  Google Scholar 

  40. Skolnick J, Kolinski A, Kihara D, Betancourt M, Rotkiewicz P, Boniecki M (2001) Ab initio protein structure prediction via a combination of threading, lattice folding, clustering and structure refinement. Prot Struct Funct Bioinf 5(Suppl):149–156

    Article  Google Scholar 

  41. Skolnick J, Zhang Y, Arakaki AK, Kolinski A, Boniecki M, Szilágyi A, Kihara D (2003) TOUCHSTONE: A unified approach to protein structure prediction. Prot Struct Funct Bioinf 53:469–479

    Article  Google Scholar 

  42. Srinivasan R, Rose GD (2002) Ab initio prediction of protein structure using LINUS. Prot Struct Funct Bioinf 47:489–495

    Article  Google Scholar 

  43. Zhang C, Hou JT, Kim SH (2002) Fold prediction of helical proteins using torsion angle dynamics and predicted restraints. Proc Natl Acad Sci USA 99:3581–3585

    Article  Google Scholar 

  44. Zhang Y, Skolnick J (2004) Tertiary structure predictions on a comprehensive benchmark of medium to large size proteins. Biophys J 87:2647–2655

    Article  Google Scholar 

  45. Zhang Y, Skolnick J (2004) Automated structure prediction of weakly homologous proteins on a genomic scale. Proc Natl Acad Sci USA 101:7594–7599

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag

About this entry

Cite this entry

McAllister, S.R., Floudas, C.A. (2008). Predictive Method for Interhelical Contacts in Alpha-Helical Proteins . In: Floudas, C., Pardalos, P. (eds) Encyclopedia of Optimization. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-74759-0_518

Download citation

Publish with us

Policies and ethics