Skip to main content

Rosen’s Method, Global Convergence, and Powell’s Conjecture

FSP

  • Reference work entry
Encyclopedia of Optimization

Article Outline

Keywords

Rosen’s Method

Global Convergence

Powell’s Conjecture

See also

References

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 2,500.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 2,499.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Allen E, Helgason R, Kennington J (1987) A generalization of Polyak's convergence result for subgradient optimization. Math Program 37:309–318

    Article  MATH  MathSciNet  Google Scholar 

  2. Armijo L (1966) Minimization of functions having Lipschitz continuous first partial derivatives. Pacific J Math 16:1–3

    MATH  MathSciNet  Google Scholar 

  3. Avriel M (1976) Nonlinear programming: Analysis and methods. Prentice-Hall, Englewood Cliffs

    MATH  Google Scholar 

  4. Bazaraa MS, Shetty CM (1979) Nonlinear programming: Theory and algorithms. Wiley, New York

    MATH  Google Scholar 

  5. Bland RG (1977) New finite pivoting rules for the simplex method. Math Oper Res 2(2):103–107

    MATH  MathSciNet  Google Scholar 

  6. Broyden CG (1965) A class of methods for solving nonlinear simultaneous equations. Math Comput 19:577–593

    Article  MATH  MathSciNet  Google Scholar 

  7. Broyden CG (1967) Quasi-Newton methods and their application to function minimization. Math Comput 21:368–381

    Article  MATH  MathSciNet  Google Scholar 

  8. Broyden CG (1970) The convergence of a class of double-rank minimization algorithms 1: general consideration. J Inst Math Appl 6:76–90

    Article  MATH  MathSciNet  Google Scholar 

  9. Broyden CG (1970) The convergence of a class of double-rank minimization algorithms 2: the new algorithms. J Inst Math Appl 6:222–231

    Article  MATH  MathSciNet  Google Scholar 

  10. Buckley A (1975) An alternate implementation of Goldfarb's minimization algorithm. Math Program 8:207–231

    Article  MATH  MathSciNet  Google Scholar 

  11. Byrd RH (1985) An example of irregular convergence in some constrained optimization methods that use the projected Hessian. Math Program 32:232–237

    Article  MATH  MathSciNet  Google Scholar 

  12. Byrd RH, Nocedal J, Yuan Y (1987) Global convergence of a class of quasi-Newton method on convex problems. SIAM J Numer Anal 24:1171–1190

    Article  MATH  MathSciNet  Google Scholar 

  13. Byrd RH, Shultz GA. A practical class of globally convergent active set strategies for linearly constrained optimization. Manuscript (unpublished)

    Google Scholar 

  14. Calamai PH, More JJ (1987) Projected gradient methods for linearly constrained problems. Math Program 39:93–116

    Article  MATH  MathSciNet  Google Scholar 

  15. Coleman TF, Conn AR (1984) On the local convergence of a quasi-Newton method for the nonlinear programming problem. SIAM J Numer Anal 1:755–769

    Article  MathSciNet  Google Scholar 

  16. Davidon WC (1959) Variable metric method for minimization. AEC Res Developm Report ANL-5990, no. nov

    Google Scholar 

  17. Davidon WC (1968) Variable metric method for minimization. Comput J 10:406–410

    Article  MATH  MathSciNet  Google Scholar 

  18. Dax A (1978) The gradient projection method for quadratic programming. Report, Inst Math, Hebrew Univ, Jerusalem

    Google Scholar 

  19. Dembo RS, Klincewicz JG (1985) Dealing with degeneracy in reduced gradient algorithms. Math Program 31:257–363

    Article  MathSciNet  Google Scholar 

  20. Dixon LCW (1972) Quasi-Newton algorithms generate identical points. Math Program 2:383–387

    Article  MATH  MathSciNet  Google Scholar 

  21. Dixon LCW (1972) Quasi-Newton algorithms generate identical points II, the proof of four new theorems. Math Program 3:345–358

    Article  MATH  MathSciNet  Google Scholar 

  22. Du D-Z (1983) A modification of Rosen-Polak's algorithm. Kexue Tongbao 28:301–305

    MATH  Google Scholar 

  23. Du D-Z (1985) Changing of point-to-set maps and point-to-set map families for continuities. Acta Math Applic Sinica 8(2):142–150, in Chinese

    MATH  Google Scholar 

  24. Du D-Z (1985) A family of gradient projection algorithms. Acta Math Applic Sinica, English Ser 2:1–13

    Article  MATH  Google Scholar 

  25. Du D-Z (1985) A gradient projection algorithm for convex programming with nonlinear constraints. Acta Math Applic Sinica 8:7–16, in Chinese

    MATH  Google Scholar 

  26. Du D-Z (1987) Remarks on the convergence of Rosen's gradient projection method. Acta Math Applic Sinica, English Ser 3:270–279

    Article  MATH  Google Scholar 

  27. Du D-Z (1988) Gradient projection methods in linear and nonlinear programming. Hadronic Press, Palm Harbor

    Google Scholar 

  28. Du D-Z (1991) Convergence theory of feasible direction methods. Sci Press, Marrickville, Australia

    MATH  Google Scholar 

  29. Du D-Z (1992) Rosen's method and slope lemmas. In: Pardalos PM (ed) Advances in Optimization and Parallel Computing. Elsevier, Amsterdam, pp 68–84

    Google Scholar 

  30. Du D-Z, Sun J, Song T-T (1980) A counterexample for Rosen's gradient projection method. Math Assortment 1:4–6, in Chinese

    Google Scholar 

  31. Du D-Z, Du X-F. A convergent reduced gradient algorithm without using special pivot. Math Numer Sinica, to appear

    Google Scholar 

  32. Du D-Z, Sun J (1983) A new gradient projection method. Math Numer Sinica 4:378–386, in Chinese

    MathSciNet  Google Scholar 

  33. Du D-Z, Sun J, Song T-T (1984) Simplified finite pivoting processes in the reduced gradient algorithms. Acta Math Applic Sinica 7:142–146, in Chinese

    MATH  MathSciNet  Google Scholar 

  34. Du D-Z, Wu F, Zhang X-S. On Rosen's gradient projection methods. Ann Oper Res, to appear

    Google Scholar 

  35. Du D-Z, Zhang X-S (1986) A convergence theorem of Rosen's gradient projection method. Math Program 36:135–144

    Article  MATH  MathSciNet  Google Scholar 

  36. Du D-Z, Zhang X-S (1989) Global convergence of Rosen's gradient projection methods. Math Program 44

    Google Scholar 

  37. Du D-Z, Zhang X-S (1989) Notes on a new gradient projection method. System Sci and Math Sci 2

    Google Scholar 

  38. Dunn JC (1981) Global and asymptotic convergence rate estimates for a class of projected gradient processes. SIAM J Control Optim 19:368–400

    Article  MATH  MathSciNet  Google Scholar 

  39. Dunn JC (1987) On the convergence of projected gradient processes to singular critical point. J Optim Th Appl 55:203–216

    Article  MATH  MathSciNet  Google Scholar 

  40. Fletcher R (1987) Practical methods of optimization, unconstrained optimization. Wiley, New York

    Google Scholar 

  41. Fletcher R, Powell MJD (1963) A rapidly convergent descent method for minimization. Comput J 6:163–168

    MATH  MathSciNet  Google Scholar 

  42. Goldfarb D (1969) Extension of Davidon's variable metric method to maximization under linear inequality and equality constraints. SIAM J Appl Math 17:739–764

    Article  MATH  MathSciNet  Google Scholar 

  43. Goldfarb D (1970) A family of variable metric methods derived by variational means. Math Comput 24:23–26

    Article  MATH  MathSciNet  Google Scholar 

  44. Goldstein J (1970) Variations on variable-metric methods. Math Comput 24:1–22

    Article  Google Scholar 

  45. Gui X-Y, Du D-Z (1984) A superlinearly convergent method to linearly constrained optimization problems under degeneracy. Acta Math Applic Sinica, English Ser 1:76–84

    Article  MATH  Google Scholar 

  46. Haraux A (1977) How to differentiate the projection on a convex set in Hilbert space: Some applications to variational inequalities. J Math Soc Japan 20:615–631

    MathSciNet  Google Scholar 

  47. He G-Z (1990) Proof of convergence of Rosen's gradient projection method. Acta Math Applic Sinica 1

    Google Scholar 

  48. Hu X-D (1989) Nonlinear programming: A unified approach and the upper bound of partial concentrator. PhD Thesis, Inst Appl Math, Chinese Acad Sci

    Google Scholar 

  49. Huang HY (1970) Unified approach to quadratically convergent algorithms for function minimization. J Optim Th Appl 5:405–423

    Article  MATH  Google Scholar 

  50. Huard P (1975) Optimization algorithms and point-to-set maps. Math Program 8:308–331

    Article  MATH  MathSciNet  Google Scholar 

  51. Huard P (1979) Extensions of Zangwill's theorem. Math Program Stud 10:98–103

    MATH  MathSciNet  Google Scholar 

  52. Kalfon P, Ribiere G, Sogno JC (1969) A method of feasible directions using projection operators. Proc IFIP congr 68: Information Processing, 1 North-Holland

    Google Scholar 

  53. Karmarkar N (1984) A new polynomial-time algorithm for linear programming. Combinatorica 4:373–395

    Article  MATH  MathSciNet  Google Scholar 

  54. Klee V, Minty GJ (1972) How good is the simplex algorithm? In: Shisha O (ed) Inequalities III. Acad Press, New York

    Google Scholar 

  55. Kwei H-Y, Gui X-Y, Wu F, Lai Y-L (1979) Extension of a variable metric algorithm to a linearly constrained optimization problem: A variation of Goldfarb's algorithm. In: Haley KB (ed) O.R. 1978. North-Holland, Amsterdam

    Google Scholar 

  56. Levitin ES, Polyak BT (1966) Constrained minimization methods. USSR Comput Math Math Phys 6(5):1–50

    Article  Google Scholar 

  57. Luenberger DG (1973) Introduction to linear and nonlinear programming. Addison-Wesley, Reading

    MATH  Google Scholar 

  58. McCormick GP (1969) Anti-zigzagging by bending. Managem Sci 15:315–320

    Google Scholar 

  59. McCormick GP (1990) A second order method for the linearly constrained nonlinear programming problem. In: Rosen JB, Mangasarian OL, Ritter K (eds) Nonlinear Programming. Acad Press, New York

    Google Scholar 

  60. McCormick GP, Tapia RA (1972) The gradient projection method under mild differentiability conditions. SIAM J Control Optim 10:93–98

    Article  MATH  MathSciNet  Google Scholar 

  61. Meyer RR (1970) The validity of a family of optimization methods. SIAM J Control Optim 8:41–54

    Article  MATH  Google Scholar 

  62. Meyer RR (1976) Sufficient conditions for the convergence of monotonic mathematical programming algorithms. J Comput Syst Sci 12:108–121

    MATH  Google Scholar 

  63. Murtagh BA, Sargent RWH (1969) A constrained minimization method with quadratic convergence. In: Fletcher R (ed) Optimization. Acad Press, New York

    Google Scholar 

  64. Murtagh BA, Saunders MA (1978) Large-scale linearly constrained optimization. Math Program 14:14–72

    Article  MathSciNet  Google Scholar 

  65. Nocedal J, Overton ML (1985) Projected Hessian updating algorithms for nonlinearly constrained optimization. SIAM J Numer Anal 1:821–850

    Article  MathSciNet  Google Scholar 

  66. Polak E (1969) On the convergence of optimization algorithms. Revue Franc Inform Rech Oper 3:17–34

    MATH  MathSciNet  Google Scholar 

  67. Polak E (1971) Computational methods in optimization. Acad Press, New York

    Google Scholar 

  68. Pollak HO (1978) Some remarks on the Steiner problem. J Combin Th A 24:278–295

    Article  MATH  MathSciNet  Google Scholar 

  69. Powell MJD (1971) On the convergence of the variable metric algorithm. J Inst Math Appl 7:21–36

    Article  MATH  MathSciNet  Google Scholar 

  70. Powell MJD (1972) Some properties of the variable metric algorithm. In: Lootsma FA (ed) Numerical Methods for Nonlinear Optimization. Acad Press, New York

    Google Scholar 

  71. Powell MJD (1974) Unconstrained minimization and extensions for constraints. In: Hammer PL, Zoutendijk G (eds) Mathematical Programming Theory and Practice. North-Holland, Amsterdam, pp 31–79

    Google Scholar 

  72. Powell MJD (1976) Some global convergence properties of a variable metric algorithm for minimization without exact line searches. In: Cottle RW, Lemke CE (eds) Nonlinear Programming. Amer Math Soc, Providence

    Google Scholar 

  73. Powell MJD (1978) The convergence of variable metric methods for nonlinearly constrained optimization calculations. In: Mangasarian O, Meyer R, Robinson S (eds) Nonlinear Programming 3. Acad Press, New York, pp 27–63

    Google Scholar 

  74. Powell MJD, Yuan Y (1991) A trust region algorithm for equality unconstrained optimization. Math Program 49:189–211

    Article  MathSciNet  Google Scholar 

  75. Pu D (1992) A class of DFP algorithm without exact linear search. Asia-Pacific J Oper Res 9:207–220

    MATH  MathSciNet  Google Scholar 

  76. Pu D (1997) The convergence of Broyden algorithms without convexity assumption. System Sci and Math Sci 10:289–298

    MATH  MathSciNet  Google Scholar 

  77. Pu D, Yu W (1988) On convergence property of DFP algorithm. J Qüfu Normal Univ 14(3):63–69

    MathSciNet  Google Scholar 

  78. Ritter K (1973) A superlinearly convergent method for minimization problems with linear inequality constraints. Math Program 4:44–71

    Article  MATH  MathSciNet  Google Scholar 

  79. Ritter K (1975) A method of conjugate directions for linearly constrained nonlinear programming problems. SIAM J Numer Anal 12:272–303

    Article  MathSciNet  Google Scholar 

  80. Ritter K (1980) Convergence and superlinear convergence of algorithms for linearly constrained minimization problems. In: Dixon LCW, Spedicado E, Szego GP (eds) Nonlinear Optimization: Theory and Algorithms II. Birkhäuser, Basel, pp 221–251

    Google Scholar 

  81. Ritter K (1981) Global and superlinear convergence of a class of variable metric methods. Math Program Stud 14:178–205

    MATH  MathSciNet  Google Scholar 

  82. Rosen JB (1960) The gradient projection method for nonlinear programming, Part I: linear constraints. SIAM J Appl Math 8:181–217

    Article  MATH  Google Scholar 

  83. Rosen JB (1961) The gradient projection method for nonlinear programming, Part II: nonlinear constraints. SIAM J Appl Math 9:514–553

    Article  Google Scholar 

  84. Shanno DF (1970) Conditioning of quasi-Newton methods for function minimization. Math Comput 24:647–656

    Article  MathSciNet  Google Scholar 

  85. Wang CY (1981) Simplifications of a new pivoting rule and Levitin-Polyak gradient projection method and their convergent property. Acta Math Applic Sinica 4:37–52, in Chinese

    MATH  Google Scholar 

  86. Wang CY (1983) On convergence property of an improved reduced gradient method. Kexue Tongbao 28:577–582

    MATH  Google Scholar 

  87. Wolfe P (1963) Methods of nonlinear programming. In: Graves RL, Wolfe P (eds) Recent Advances in Mathematical Programming

    Google Scholar 

  88. Wolfe P (1969) Convergence conditions for ascent methods. SIAM Rev 11:226–235

    Article  MATH  MathSciNet  Google Scholar 

  89. Wolfe P (1970) Convergence theory in nonlinear programming. In: Abadie J (ed) Integer and Nonlinear Programming. North-Holland, Amsterdam

    Google Scholar 

  90. Wolfe P (1972) On the convergence of gradient methods under constraints. IBM J Res Developm 16:407–411

    Article  MATH  MathSciNet  Google Scholar 

  91. Wu F, Gui X (1981) A class of variable metric methods with n+1 parameters. Acta Math 24:921–930

    MATH  MathSciNet  Google Scholar 

  92. Yue M, Han J (1979) A new reduced gradient method. Sci Sinica 22:1099–1113

    MATH  MathSciNet  Google Scholar 

  93. Yue M, Han J (1984) A unified approach to the feasible direction methods for nonlinear programming with linear constraints. Acta Math Applic Sinica, English Ser 1:63–73

    Article  MATH  Google Scholar 

  94. Zangwill WI (1969) Convergence conditions for nonlinear programming algorithms. Managem Sci 16:1–13

    MATH  MathSciNet  Google Scholar 

  95. Zangwill WI (1969) Nonlinear programming: A unified approach. Prentice-Hall, Englewood Cliffs

    MATH  Google Scholar 

  96. Zhang X-S (1979) An improved Rosen-Polak method. Acta Math Applic Sinica 2:257–267, in Chinese

    Google Scholar 

  97. Zhang X-S (1985 1987) On the convergence of Rosen's gradient projection method. Acta Math Applic Sinica 8:125–128, in Chinese. Also in: English Ser 3:280–288

    Google Scholar 

  98. Zoutendijk G (1960) Methods of feasible direction methods. Elsevier, Amsterdam

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag

About this entry

Cite this entry

Du, DZ., Pardalos, P.M., Wu, W. (2008). Rosen’s Method, Global Convergence, and Powell’s Conjecture . In: Floudas, C., Pardalos, P. (eds) Encyclopedia of Optimization. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-74759-0_573

Download citation

Publish with us

Policies and ethics