Article Outline
Keywords
Introduction, Critical Points, Nondegeneracy
Relations Between KKT Points: Morse Relations
Projected Gradients
Global Gradient Flows: Equality Con-straints Only
Global Gradient Flows: The General Case
See also
References
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Agrachev AA, Pallaschke D, Scholtes S (1997) On Morse theory for piecewise smooth functions. J Dynamical and Control Systems 3:449–469
Brink-Spalink J, Jongen HTh (1979) Morse theory for optimization problems with functions of maximum type. Methods Oper Res 31:121–134
Craven BD, Gershkovich V, Ralph D (1994) Morse theory and relations between smooth and nonsmooth optimization. In: Glover BM, Jeyakumar V, Anderson GT (eds) Proc. Optimization Miniconference, Univ. Ballarat, pp 39–46
Degiovanni M (1990) Homotopical properties of a class of nonsmooth functions. Ann Mat Pura Appl (IV) CLVI:37–71
Dupuis P, Nagurney A (1993) Dynamical systems and variational inequalities. Ann Oper Res 44:9–42
Filippov AF (1988) Differential equations with discontinuous righthand sides. Kluwer, Dordrecht
Guddat J, Jongen HTh, Rückmann J-J (1986) On stability and stationary points in nonlinear optimization. J Austral Math Soc (Ser B) 28:36–56
Hirabayashi R, Jongen HTh, Shida M (1994) Euler's formula via potential functions. J Oper Res Japan 37(3):228–231
Ioffe A, Schwartzman E (1996) Metric critical point theory 1. Morse regularity and homotopic stability of a minimum. J Math Pures Appl 75:125–153
JongenHTh (1977) Zur Geometrie endlichdimensionaler nichtkonvexer Optimierungsaufgaben. Internat Ser Numer Math 36:111–136
Jongen HTh, Jonker P, Twilt F (1983) Nonlinear optimization in R n, I. Morse theory, Chebyshev approximation. P. Lang, Frankfurt am Main
JongenHTh, Jonker P, Twilt F (1986) Nonlinear optimization in R n, II. transversality, flows, parametric aspects. P. Lang, Frankfurt am Main
JongenHTh, Pallaschke D (1988) On linearization and continuous selections of functions. Optim 19:343–353
Jongen HTh, Ruiz Jhones A (2000) Nonlinear optimization: On the min-max digraph and global smoothing. In: Ioffe A, Reich S, Shafrir I (eds) Calculus of Variations and Differential Equations, vol 410. Res Notes in Math. Chapman and Hall/CRC, London/Boca Raton, FL, pp 119–135
Jongen HTh, Weber G-W (1992) Nonconvex optimization and its structural frontiers. In: Krabs W, Zowe J (eds) Modern Methods of Optimization, vol 378. Lecture Notes Economics and Math Systems, pp 151–203
Milnor J (1963) Morse theory. Ann of Math Stud, vol 51. Princeton Univ. Press, Princeton
Smale S (1961) On gradient dynamical systems. A-MATH 74(1):199–206
Zank H (1994) Personal communication
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2008 Springer-Verlag
About this entry
Cite this entry
Jongen, H.T., Jhones, A.R. (2008). Topology of Global Optimization . In: Floudas, C., Pardalos, P. (eds) Encyclopedia of Optimization. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-74759-0_684
Download citation
DOI: https://doi.org/10.1007/978-0-387-74759-0_684
Publisher Name: Springer, Boston, MA
Print ISBN: 978-0-387-74758-3
Online ISBN: 978-0-387-74759-0
eBook Packages: Mathematics and StatisticsReference Module Computer Science and Engineering