Skip to main content

Topology of Global Optimization

  • Reference work entry
Encyclopedia of Optimization

Article Outline

Keywords

Introduction, Critical Points, Nondegeneracy

Relations Between KKT Points: Morse Relations

Projected Gradients

Global Gradient Flows: Equality Con-straints Only

Global Gradient Flows: The General Case

See also

References

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Agrachev AA, Pallaschke D, Scholtes S (1997) On Morse theory for piecewise smooth functions. J Dynamical and Control Systems 3:449–469

    MATH  MathSciNet  Google Scholar 

  2. Brink-Spalink J, Jongen HTh (1979) Morse theory for optimization problems with functions of maximum type. Methods Oper Res 31:121–134

    MATH  MathSciNet  Google Scholar 

  3. Craven BD, Gershkovich V, Ralph D (1994) Morse theory and relations between smooth and nonsmooth optimization. In: Glover BM, Jeyakumar V, Anderson GT (eds) Proc. Optimization Miniconference, Univ. Ballarat, pp 39–46

    Google Scholar 

  4. Degiovanni M (1990) Homotopical properties of a class of nonsmooth functions. Ann Mat Pura Appl (IV) CLVI:37–71

    Article  MathSciNet  Google Scholar 

  5. Dupuis P, Nagurney A (1993) Dynamical systems and variational inequalities. Ann Oper Res 44:9–42

    Article  MATH  MathSciNet  Google Scholar 

  6. Filippov AF (1988) Differential equations with discontinuous righthand sides. Kluwer, Dordrecht

    Google Scholar 

  7. Guddat J, Jongen HTh, Rückmann J-J (1986) On stability and stationary points in nonlinear optimization. J Austral Math Soc (Ser B) 28:36–56

    MATH  MathSciNet  Google Scholar 

  8. Hirabayashi R, Jongen HTh, Shida M (1994) Euler's formula via potential functions. J Oper Res Japan 37(3):228–231

    MATH  MathSciNet  Google Scholar 

  9. Ioffe A, Schwartzman E (1996) Metric critical point theory 1. Morse regularity and homotopic stability of a minimum. J Math Pures Appl 75:125–153

    MATH  MathSciNet  Google Scholar 

  10. JongenHTh (1977) Zur Geometrie endlichdimensionaler nichtkonvexer Optimierungsaufgaben. Internat Ser Numer Math 36:111–136

    MathSciNet  Google Scholar 

  11. Jongen HTh, Jonker P, Twilt F (1983) Nonlinear optimization in R n, I. Morse theory, Chebyshev approximation. P. Lang, Frankfurt am Main

    MATH  Google Scholar 

  12. JongenHTh, Jonker P, Twilt F (1986) Nonlinear optimization in R n, II. transversality, flows, parametric aspects. P. Lang, Frankfurt am Main

    Google Scholar 

  13. JongenHTh, Pallaschke D (1988) On linearization and continuous selections of functions. Optim 19:343–353

    Article  MATH  MathSciNet  Google Scholar 

  14. Jongen HTh, Ruiz Jhones A (2000) Nonlinear optimization: On the min-max digraph and global smoothing. In: Ioffe A, Reich S, Shafrir I (eds) Calculus of Variations and Differential Equations, vol 410. Res Notes in Math. Chapman and Hall/CRC, London/Boca Raton, FL, pp 119–135

    Google Scholar 

  15. Jongen HTh, Weber G-W (1992) Nonconvex optimization and its structural frontiers. In: Krabs W, Zowe J (eds) Modern Methods of Optimization, vol 378. Lecture Notes Economics and Math Systems, pp 151–203

    Google Scholar 

  16. Milnor J (1963) Morse theory. Ann of Math Stud, vol 51. Princeton Univ. Press, Princeton

    MATH  Google Scholar 

  17. Smale S (1961) On gradient dynamical systems. A-MATH 74(1):199–206

    Article  MathSciNet  Google Scholar 

  18. Zank H (1994) Personal communication

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag

About this entry

Cite this entry

Jongen, H.T., Jhones, A.R. (2008). Topology of Global Optimization . In: Floudas, C., Pardalos, P. (eds) Encyclopedia of Optimization. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-74759-0_684

Download citation

Publish with us

Policies and ethics