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Preface

State-of-the-art automatic speech recognition (ASR) systems use statistical
data-driven methods based on hidden Markov models (HMMs). Although such
approaches have proved to be efficient choices, ASR systems often perform
much worse than human listeners, especially in the presence of unexpected
acoustic variability. To improve performance, we usually rely on collecting
more data to train more detailed models. However, such resources are rarely
available, since the presence of variabilities in speech arise from many differ-
ent factors, and thus a huge amount of training data is required to cover all
possible variabilities. In other words, it is not enough to handle these vari-
abilities by relying solely on statistical models. The systems need additional
knowledge on speech that could help to handle these sources of variability.
Otherwise, only a limited level of success could be achieved.

Many researchers are aware of this problem, and thus various attempts
to integrate more explicitly knowledge-based and statistical approaches have
been made. However, incorporating various additional knowledge sources often
leads to a complicated model, where achieving optimal performance is not
feasible due to insufficient resources or data sparseness. As a result, input
space resolution may be lost due to non-robust estimates and the increased
number of unseen patterns. Moreover, decoding with large models may also
become cumbersome and sometimes even impossible.

This book addresses the problem of developing efficient ASR systems that
can maintain a balance between utilizing wide-ranging knowledge of speech
variability while keeping the training/recognition effort feasible, of course
while also improving speech recognition performance. In this book, an ef-
ficient general framework to incorporate additional knowledge sources into
state-of-the-art statistical ASR systems is provided. It can be applied to many
existing ASR problems with their respective model-based likelihood functions
in flexible ways.

Since there are various types of knowledge sources from different domains,
it may be difficult to formulate a probabilistic model without learning the de-
pendencies between the sources. To solve such problems in a unified way, the
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work reported in this book adopts the Bayesian network (BN) framework. This
approach allows the probabilistic relationship between information sources to
be learned. Another advantage of the BN framework lies in the fact that it
facilitates the decomposition of the joint probability density function (PDF)
into a linked set of local conditional PDFs based on the junction tree algo-
rithm. Consequently, a simplified form of the model can be constructed and
reliably estimated using a limited amount of training data.

This book focuses on the acoustic modeling problem as arguably the cen-
tral part of any speech recognition system. The incorporation of various knowl-
edge sources, including background noises, accent, gender and wide phonetic
knowledge information, in modeling is also discusses. Such an application
often suffers from a sparseness of data and memory constraints. First, the
additional sources of knowledge are incorporated at the HMM state distri-
bution. Then, these additional sources of knowledge are incorporated at the
HMM phonetic modeling. The presented approaches are experimentally veri-
fied in the large-vocabulary continuous-speech recognition (LVCSR) task. The
book closes with a summary of the described methods and the results of the
evaluations.
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Left tetraphone context

Language model

Linear prediction coeflicients

HMM/BN for left, right and center state
HMM/BN for left and right state

Left skip-triphone context

Large-vocabulary continuous-speech recognition
Machine translation aided dialogue

Maximum a posteriori

Minimum description length

Mel-frequency cepstral coefficients
Massachusetts Institute of Technology
Maximum likelihood

Maximum likelihood linear regression
Modulation-filtered spectrogram

Machine translation

National Institute of Standards and Technology
Noise voice composition

Probability density function
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PLP Perceptual linear prediction

PMC Parallel model combination

R3 Right triphone context

R4 Right tetraphone context

Rel Relative

Resc Rescoring

Rsk3 Right skip-triphone context

S2ST Speech-to-speech translation

SD Speaker dependent

SI Speaker independent

SIL Silence

SLC Spoken Language Communication

SNR Signal-to-noise ratio

SSS Successive state splitting

STQ Speech processing, transmission and quality

SUB Substitutions

SWB Switchboard

TC-STAR Technology and corpora for speech to speech
translation research

TI Texas Instrument

US United States

VQ Vector quantization

WER Word error rate

WEST Weighted finite state transducers

WSJ Wall Street journal





