Skip to main content

Personalized Movie Recommendation

  • Chapter
  • First Online:
Handbook of Multimedia for Digital Entertainment and Arts

Abstract

This article proposes a movie recommender system, named MoRe, which follows a hybrid approach that combines content-based and collaborative filtering. MoR’s performance is empirically evaluated upon the predictive accuracy of the algorithms as well as other important indicators such as the percentage of items that the system can actually predict (called prediction coverage) and the time required for generating predictions. The remainder of this article is organized as follows. The next section is devoted to the fundamental background of recommender systems describing the main recommendation techniques along with their advantages and limitations. Right after, we illustrate the MoRe system overview and in the section following, we describe in detail the algorithms implemented. The empirical evaluation results are then presented, while the final section provides a discussion about conclusions and future research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. D. Goldberg, D. Nichols, B.M. Oki, and D. Terry, “Using Collaborative Filtering to Weave an Information Tapestry,” Communications of the ACM Vol. 35, No. 12, December, 1992, p.p. 61–70.

    Article  Google Scholar 

  2. U. Shardanand, and P. Maes, “Social Information Filtering: Algorithms for Automating “Word of Mouth”,” Proceedings of the ACM CH’95 Conference on Human Factors in Computing Systems, Denver, Colorado, 1995, p.p. 210–217.

    Google Scholar 

  3. B. N. Miller, I. Albert, S. K. Lam, J. Konstan, and J. Riedl, “MovieLens Unplugged: Experiences with an Occasionally Connected Recommender System,” Proceedings of the International Conference on Intelligent User Interfaces, 2003.

    Google Scholar 

  4. W. Hill, L. Stead, M. Rosenstein, and G. Furnas, “Recommending and Evaluating Choices in a Virtual Community of Use,” Proceedings of the ACM Conference on Human Factors in Computing Systems, 1995, p.p. 174–201.

    Google Scholar 

  5. Z. Yu, and X. Zhou, “TV3P: An Adaptive Assistant for Personalized TV,” IEEE Transactions on Consumer Electronics, Vol. 50, No. 1, 2004, p.p. 393–399.

    Article  Google Scholar 

  6. D. O’Sullivan, B. Smyth, D. C. Wilson, K. McDonald, and A. Smeaton, “Improving the Quality of the Personalized Electronic Program Guide,” User Modeling and User Adapted Interaction, Vol. 14, No. 1, 2004, p.p. 5–36.

    Article  Google Scholar 

  7. S. Gutta, K. Kuparati, K. Lee, J. Martino, D. Schaffer, and J. Zimmerman, “TV Content Recommender System,” Proceedings of the Seventeenth National Conference on Artificial Intelligence, Austin, Texas, 2000, p.p. 1121–1122.

    Google Scholar 

  8. P. Resnick, N. Iacovou, M. Suchak, P. Bergstrom, and J. Riedl, “GroupLens: An Open Architecture for Collaborative Filtering of NetNews,” Proceedings of the ACM Conference on Computer Supported Cooperative Work, 1994, p.p. 175–186.

    Google Scholar 

  9. J. Konstan, B. Miller, D. Maltz, J. Herlocker, L. Gordon, and J. Riedl, “GroupLens: Applying Collaborative Filtering to Usenet News,” Communications of the ACM, Vol. 40, No. 3, 1997, p.p. 77–87.

    Article  Google Scholar 

  10. G. Linden, B. Smith, and J. York, “Amazon.com Recommendations: Item-to-Item Collaborative Filtering,” IEEE Internet Computing, Vol. 7, No. 1, January-February, 2003, p.p. 76–80.

    Article  Google Scholar 

  11. G. Lekakos, and G. M. Giaglis, “A Lifestyle-based Approach for Delivering Personalized Advertisements in Digital Interactive Television,” Journal Of Computer Mediated Communication, Vol. 9, No. 2, 2004.

    Google Scholar 

  12. B. Smyth, and P. Cotter, “A Personalized Television Listings Service,” Communications of the ACM, Vol. 43, No. 8, 2000, p.p. 107–111.

    Article  Google Scholar 

  13. G. Lekakos, and G. Giaglis, “Improving the Prediction Accuracy of Recommendation Algorithms: Approaches Anchored on Human Factors,” Interacting with Computers, Vol. 18, No. 3, May, 2006, p.p. 410–431.

    Article  Google Scholar 

  14. J. Schafer, D. Frankowski, J. Herlocker, and S. Shilad, “Collaborative Filtering Recommender Systems,” The Adaptive Web, 2007, p.p. 291–324.

    Google Scholar 

  15. J. S. Breese, D. Heckerman, and D. Kadie, “Empirical Analysis of Predictive Algorithms for Collaborative Filtering,” Proceedings of the Fourteenth Annual Conference on Uncertainty in Artificial Intelligence, July, 1998, p.p. 43–52.

    Google Scholar 

  16. J. Herlocker, J. Konstan, and J. Riedl, “An Empirical Analysis of Design Choices in Neighborhood-Base Collaborative Filtering Algorithms,” Information Retrieval, Vol. 5, No. 4, 2002, p.p. 287–310.

    Article  Google Scholar 

  17. K. Goldberg, T. Roeder, D. Guptra, and C. Perkins, “Eigentaste: A Constant-Time Collaborative Filtering Algorithm,” Information Retrieval, Vol. 4, No. 2, 2001, p.p. 133–151.

    Article  MATH  Google Scholar 

  18. R. J. Mooney, and L. Roy, “Content-based Book Recommending Using Learning for Text Categorization,” Proceedings of the Fifth ACM Conference in Digital Libraries, San Antonio, Texas, 2000, p.p. 195–204.

    Google Scholar 

  19. M. Balabanovic, and Y. Shoham, “Fab: Content-based Collaborative Recommendation,” Communications of the ACM, Vol. 40, No. 3, 1997, p.p. 66–72.

    Article  Google Scholar 

  20. M. Pazzani, and D. Billsus, “Learning and Revising User Profiles: The identification of interesting Web sites,” Machine Learning, Vol. 27, No. 3, 1997, p.p. 313–331.

    Article  Google Scholar 

  21. M. Balabanovic, “An Adaptive Web Page Recommendation Service,” Proceedings of the ACM First International Conference on Autonomous Agents, Marina del Ray, California, 1997, p.p. 378–385.

    Google Scholar 

  22. M. Pazzani, and D. Billsus, “Content-based Recommendation Systems,” The Adaptive Web, 2007, p.p. 325–341.

    Google Scholar 

  23. B. Sarwar, G. Karypis, J. Konstan, and J. Riedl, “Analysis of Recommendation Algorithms for E-Commerce,” Proceedings of ACM E-Commerce, 2000, p.p. 158–167.

    Google Scholar 

  24. R. Burke, “Hybrid Recommender Systems: Survey and Experiments,” User Modeling and User Adapted Interaction, Vol. 12, No. 4, November, 2002, p.p. 331–370.

    Article  MATH  Google Scholar 

  25. M. Claypool, A. Gokhale, T. Miranda, P. Murnikov, D. Netes, and M. Sartin, “Combining Content-Based and Collaborative Filters in an Online Newspaper,” Proceedings of the ACM SIGIR Workshop on Recommender Systems, Berkeley, CA, 1999, http://www.csee.umbc.edu/ ian/sigir99-rec/ .

  26. I. Schwab, W. Pohl, and I. Koychev, “Learning to Recommend from Positive Evidence,” Proceedings of the Intelligent User Interfaces, New Orleans, LA, 2000, p.p. 241–247.

    Google Scholar 

  27. M. Pazzani, “A Framework for Collaborative, Content-Based and Demographic Filtering,” Artificial Intelligence Review, Vol. 13, No. 5–6, December, 1999, p.p. 393–408.

    Article  Google Scholar 

  28. R. Burke, “Hybrid Web Recommender Systems,” The Adaptive Web, 2007, p.p. 377–408.

    Google Scholar 

  29. C. Basu, H. Hirsh, and W. Cohen, “Recommendation as Classification: Using Social and Content-based Information in Recommendation,” Proceedings of the Fifteenth National Conference on Artificial Intelligence, Madison, WI, 1998, p.p. 714–720.

    Google Scholar 

  30. J. Alspector, A. Koicz, and N. Karunanithi, “Feature-based and Clique-based User Models for Movie Selection: A Comparative study,” User Modeling and User Adapted Interaction, Vol. 7, no. 4, September, 1997, p.p. 297–304.

    Article  Google Scholar 

  31. A. Rashid, I. Albert, D. Cosley, S. Lam, McNee S., J. Konstan, and J. Riedl, “Getting to Know You: Learning New User Preferences in Recommender Systems,” Proceedings of International Conference on Intelligent User Interfaces, 2002.

    Google Scholar 

  32. J. Herlocker, J. Konstan, A. Borchers, and J. Riedl, “An Algorithmic Framework for Performing Collaborative Filtering,” Proceedings of the Twenty-second International Conference on Research and Development in Information Retrieval (SIGIR ’99), New York, 1999, p.p. 230–237.

    Google Scholar 

  33. G. Karypis, “Evaluation of Item-Based Top-N Recommendation Algorithms,” Proceedings the Tenth International Conference on Information and Knowledge Management, 2001, p.p. 247–254.

    Google Scholar 

  34. D. Cosle, S. Lam, I. K. Albert, J., and J. Riedl, “Is Seeing Believing? How Recommender Systems Influence Users’ Opinions,” Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, Fort Lauderdale, FL, 2003, p.p. 585–592.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to George Lekakos .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Lekakos, G., Charami, M., Caravelas, P. (2009). Personalized Movie Recommendation. In: Furht, B. (eds) Handbook of Multimedia for Digital Entertainment and Arts. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-89024-1_1

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-89024-1_1

  • Published:

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-387-89023-4

  • Online ISBN: 978-0-387-89024-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics