Abstract
Game is a way of entertainment, a means for excitement, fun and socialization. Online games have achieved popularity due to increasing broadband adoption among consumers. Relatively cheap bandwidth Internet connections allow large number of players to play together. Since the introduction of Network Virtual Environment (NVE) in 1980s for military simulation, many interesting applications have been evolved over the past few decades. Massively multiplayer online (role-playing) game, MMOG or MMORPG, is a new genre of online games that has emerged with the introduction of Ultima since 1997. It is a kind of online computer game with the participation of hundreds of thousands of players in a virtual world.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
A. El-Sayed, V. Roca, and L. Mathy, “A survey of proposals for an alternative group communication service,” IEEE Network Magazine special Issue on Multicasting: An Enabling Technology, vol. 17, no. 1, pp. 47–54, 2003.
S.-Y. Hu, S.-C. Chang, and J.-R. Jiang, “Voronoi state management for peer-to-peer massively multiplayer online games,” in IEEE Consumer Communications and Networking Conference, 2008, p. 1134–1138.
M. Varvello, E. Biersack, and C. Diot, “Dynamic clustering in delaunay-based p2p networked virtual environments,” in ACM SIGCOMM workshop on Network and system support for games, 2007, pp. 105–110.
M. Claypool and K. Claypool, “Latency and player actions in online games,” Entertainment networking SPECIAL ISSUE: Entertainment networking, pp. 40–45, 2006.
M. Hosseini, D. T. Ahmed, S. Shirmohammadi, and N. D. Georganas, “A Survey of Application-Layer Multicast Protocols,” IEEE Communications Surveys & Tutorials, vol. 9, no. 3, pp. 58–74, 2007.
I. Kazem, D. T. Ahmed, and S. Shirmohammadi, “A visibility-driven approach to managing interest in distributed simulations with load balancing,” in IEEE Symposium on Distributed Simulation and Real-Time Applications (DS-RT), 2007, pp. 31–38.
T. Iimura, H. Hazeyama, and Y. Kadobayashi, “Zoned federation of game servers: a peer-to-peer approach to scalable multi-player online games,” in NetGames ’04: Proceedings of 3rd ACM SIGCOMM workshop on Network and system support for games, 2004, pp. 116–120.
B. De Vleeschauwer et al., “Dynamic microcell assignment for massively multiplayer online gaming,” in ACM SIGCOMM workshop on Network and system support for games (NetGames), 2005, pp. 1–7.
F. Lu, S. Parkin, and G. Morgan, “Load balancing for massively multiplayer online games,” in ACM SIGCOMM workshop on Network and system support for games (NetGames), 2006, p. 1.
J. Smed, T. Kaukoranta, and H. Hakonen, “Aspects of networking in multiplayer computer games,” in International Conference on Application and Development of Computer Games in the 21st Century, 2001, pp. 74–81.
J. C. d. Oliveira and N. D. Georganas, “VELVET: an adaptive hybrid architecture for very large virtual environments,” Presence: Teleoperators and Virtual Environments, vol. 12, no. 6, pp. 555–580, 2003.
D. T. Ahmed, S. Shirmohammadi, and J. Oliveira, “Improving gaming experience in zonal MMOGs,” in MULTIMEDIA ’07: Proceedings of the 15th international conference on Multimedia, 2007, pp. 581–584.
E. Léty, T. Turletti, and F. Baccelli, “SCORE: a scalable communication protocol for large-scale virtual environments,” IEEE/ACM Transactions on Networking (TON), vol. 12, no. 2, pp. 247–260, 2004.
B. Knutsson, H. Lu, W. Xu, and B. Hopkins, “Peer-to-Peer Support for Massively Multiplayer Games,” in IEEE Conference on Computer Communications (INFOCOM), 2004.
T. Hampel, T. Bopp, and R. Hinn, “A peer-to-peer architecture for massive multiplayer online games,” in NetGames ’06: Proceedings of 5th ACM SIGCOMM workshop on Network and system support for games, 2006, p. 48.
M. Assiotis and V. Tzanov, “A distributed architecture for MMORPG,” in ACM SIGCOMM workshop on Network and system support for games (NetGames), 2006, p. 4.
S. Yamamoto, Y. Murata, K. Yasumoto, and M. Ito, “A distributed event delivery method with load balancing for MMORPG,” in NetGames ’05: Proceedings of 4th ACM SIGCOMM workshop on Network and system support for games, 2005, pp. 1–8.
A. P. Yu and S. T. Vuong, “MOPAR: a mobile peer-to-peer overlay architecture for interest management of massively multiplayer online games,” in international workshop on Network and operating systems support for digital audio and video (NOSSDAV)), 2005, pp. 99–104.
A. Steed and C. Angus, “Supporting Scalable Peer to Peer Virtual Environments Using Frontier Sets,” in VR ’05: Proceedings of the 2005 IEEE Conference 2005 on Virtual Reality, 2005, pp. 27–34.
C. T. Fook, L. Qingping, and Z. Liang, “A Novel Approach for Addressing Extensibility Issue in Collaborative Virtual Environment,” in CW ’03: Proceedings of the 2003 International Conference on Cyberworlds, 2003, p. 78.
D. Lee, M. Lim, S. Han, and K. Lee, “ATLAS: A Scalable Network Framework for Distributed Virtual Environments,” Presence: Teleoperators and Virtual Environments, vol. 16, no. 2, pp. 125–156, 2007.
Z. Liang, L. Qingping, and C. T. Fook, “Mobile Agent-Based Architecture for Large-Scale CVE,” in CW ’03: Proceedings of the 2003 International Conference on Cyberworlds, 2003, p. 69.
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2009 Springer Science+Business Media, LLC
About this chapter
Cite this chapter
Ahmed, D.T., Shirmohammadi, S. (2009). Zoning Issues and Area of Interest Management in Massively Multiplayer Online Games. In: Furht, B. (eds) Handbook of Multimedia for Digital Entertainment and Arts. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-89024-1_8
Download citation
DOI: https://doi.org/10.1007/978-0-387-89024-1_8
Published:
Publisher Name: Springer, Boston, MA
Print ISBN: 978-0-387-89023-4
Online ISBN: 978-0-387-89024-1
eBook Packages: Computer ScienceComputer Science (R0)