Skip to main content

Bio-inspired Cognitive Radio for Dynamic Spectrum Access

  • Chapter
  • First Online:
Autonomic Computing and Networking

Abstract

Dynamic spectrum access (DSA) has raisedthe attention of industrial and academic researchers due to the fact thatit is seen as a technologyable to overcome the lack of available spectrum for new communication services.In particular, autonomic DSA (ADSA) systems are indicated as a solution to spectrumscarcity caused by the current “command and control” allocationparadigm. However, ADSA requires a higher level of reconfigurability with respect totraditional wireless systems. In this context, one of the technologies thatcan provide such flexibility is the promising cognitive radio (CR).In an ADSA scenario, CR should sense the spectrum to find the resources unused byprimary (licensed) users, which could then be exploited by secondary(unlicensed) CR users to increase the overall system efficiency.In this chapter, a comprehensive overview of CR applications to ADSA is carried out;in particular, attention is paid to the potentialities of autonomic bio-inspiredapproaches, and on their advantages in the solution of the challenges ofADSA systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adapt4 Inc (2008) XG1™ Cognitive Radio. http://www.adapt4.com/adapt4-products.php

  2. Akyildiz IF, Lee WY, Vuran MC, Mohanty S (2006) NeXt generation/dynamic spectrum access/cognitive radio wireless networks: a survey. Computer Networks 50:2127–2159

    Article  MATH  Google Scholar 

  3. Anderson ML (2003) Embodied cognition: a field guide. Artificial Intelligence 149:91–130

    Article  Google Scholar 

  4. Baldo N, Zorzi M (2008) Learning and adaptation in cognitive radios usingneural networks. In: 5th IEEE Consumer Communications and NetworkingConference, pp 998–1003

    Google Scholar 

  5. Barbarossa S, Scutari G (2007) Bio-inspired sensor network design. IEEE SignalProcessing Magazine 44(3):26–35

    Article  Google Scholar 

  6. Bhargava KV, Hossain E (2007) Cognitive Wireless Communication Networks.Springer, Berlin

    Google Scholar 

  7. Bixio L, Oliveri G, Ottonello M, Raffetto M, Regazzoni CS (2007) Areinforcement learning approach to cognitive radio. In: Software DefinedRadio Technical Conference Proceedings, Denver, USA

    Google Scholar 

  8. Chapin JM, Doyle L (2007) A path forwards for cognitive radio research. In:Second International Conference on Cognitive Radio Oriented Wireless Networksand Communications, Orlando, USA, pp 127–132

    Google Scholar 

  9. Chapin JM, Lehr WH (2007) The path to market success for dynamic spectrumaccess technology. IEEE Comm Mag 45(5):96–103

    Article  Google Scholar 

  10. Clancy C, Hecker J, Stuntebeck E, O’Shea T (2007) Applications of machinelearning to cognitive radio networks. IEEE Wireless Communications14(4):47–52

    Article  Google Scholar 

  11. Cliff D (2003) Biologically-inspired computing approaches to cognitive systems:a partial tour of the literature. Tech. Rep. HPL-2003-11, Digital MediaSystems Laboratory, HP Laboratories, Bristol

    Google Scholar 

  12. Cordeiro C, Daneshrad B, Evans J, Mandayam N, Marshall P, Shankar S (eds) (2007) Special issue on adaptive, spectrum agile, and cognitive wireless networks. IEEE J Sel Area Comm 25(3):513–516

    Google Scholar 

  13. Costa MHM (1983) Writing on dirty paper. IEEE Trans Inform Theory29(3):439–441

    Article  MATH  MathSciNet  Google Scholar 

  14. CRN Workshop (2008) 2nd IEEE International Workshop on Cognitive RadioNetworks.http://cms.comsoc.org/CCNC_2008/Content/Home/Call_for_Papers_/CRN_Workshop.html

  15. CROWNCom (2008) International conference on cognitive radio oriented wirelessnetworks and communications. http://www.crowncom.org/

  16. Cybenko G, Berk VH, Gregorio-De Souza ID, Behre C (2006) Practical autonomiccomputing. In: Proceedings of the 30th Annual International Computer Softwareand Applications Conference, Washington, DC, USA, pp 3–14

    Google Scholar 

  17. Damasio A (1999) The Feeling of What Happens: Body and Emotion in the Making ofConsciousness. Harcourt Brace, San Diego

    Google Scholar 

  18. De Castro LN, Von Zuben FJ (2005) Recent Developments in BiologicallyInspired Computing. Idea Group Publishing, New York

    Google Scholar 

  19. De Mello RF, Cuenca RG, Yang LT (2006) Genetic algorithms applied to organizewireless sensor networks aiming good coverage and redundancy. In: FirstInternational Conference on Communications and Networking in China, pp 1–5

    Google Scholar 

  20. Dobre O, Abdi A, Bar-Ness Y, Su W (2007) Survey of automatic modulationclassification techniques: classical approaches and new trends. IETCommunications 1(2):137–156

    Google Scholar 

  21. Dore A, Pinasco M, Regazzoni CS (2007) A bio-inspired learning approach for theclassification of risk zones in a smart space. In: Online Learning forClassification Workshop, Minneapolis, USA, pp 1–8,\urlprefixhttp://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4270438

  22. Fehske A, Gaeddert J, Reed JH (2005) A new approach to signal classificationusing spectral correlation and neural networks. In: First IEEE InternationalSymposium on New Frontiers in Dynamic Spectrum Access Networks, pp 144–150

    Google Scholar 

  23. Fette BA (2006) Cognitive Radio Technology. Newnes, Oxford

    Google Scholar 

  24. Geirhofer S, Tong L, Sadler BM (2007) Dynamic spectrum access in the timedomain: modeling and exploiting white space. IEEE Comm Mag 45(5):66–72

    Article  Google Scholar 

  25. Han T, Kobayashi K (1981) A new achievable rate region for the interferencechannel. IEEE Trans Inform Theory 27(1):49–60

    Article  MATH  MathSciNet  Google Scholar 

  26. Haupt RL, Haupt SE (2004) Practical Genetic Algorithms, 2nd edn. Wiley, NewYork

    MATH  Google Scholar 

  27. Haykin S (2005) Cognitive radio: brain-empowered wireless communications. IEEEJ Sel Area Comm 23(2):201–220

    Article  Google Scholar 

  28. Haykin S (2006) Cognitive dynamic systems. Proceedings of theIEEE 94(11):1910–1911

    Google Scholar 

  29. Haykin S (2006) Cognitive radar: a way of the future. IEEE SigProc Mag 23(1):30–40

    Article  Google Scholar 

  30. Haykin S, Li G, Shafi M (eds) (2008) Special issue on Cognitive Radio,Proceedings of the IEEE

    Google Scholar 

  31. Ibrahim MT, Anthony RJ, Eymann T (2006) Exploring adaptation & self-adaptationin autonomic computing systems. In: Proceedings of the 17th InternationalWorkshop on Database and Expert Systems Applications, Los Alamitos, USA, pp129–138

    Google Scholar 

  32. IEEE 80216 License-Exempt (LE) Task Group (2008) Web site.http://ieee802.org/16/le/

  33. IEEE 80222 Working Group (2008) Web site. http://www.ieee802.org/22/

  34. IEEE Communications Society TCCN (2008) Web site.http://www.eecs.ucf.edu/tccn/index.html

  35. IEEE Standards Coordinating Committee 41 (2008) Web site.http://www.scc41.org/

  36. Ileri O, Mandayam N (2008) Dynamic spectrum access models: Toward anengineering perspective in the spectrum debate. IEEE Communication Magazine46(1):153–160

    Article  Google Scholar 

  37. Le B, Garcia P, Chen Q, Li B, Ge F, El Nainay M, Rondeau T, Bostian C (2007)A public safety cognitive radio node system. In: Software Defined RadioTechnical Conference Proceedings, Denver, USA, URL http://www.sdrforum.org/SDR08/3.3-2.pdf

  38. Liang YC, Chen HH, Mitola J, Mahonen P, Kohno R, Reed JH (eds) (2008) Specialissue on cognitive radio theory and application, vol 26, IEEE J. Sel. AreaComm.

    Google Scholar 

  39. Miorandi D, Yamamoto L, Dini P (2006) Service evolution in bio-inspiredcommunication systems. International Transactions on Systems Science andApplications Journal 2(1):51–60

    Google Scholar 

  40. Mitchell TM (1997) Machine Learning. McGraw-Hill, New York

    MATH  Google Scholar 

  41. Mitola J (1992) Software radios-survey, critical evaluation and futuredirections. In: National Telesystems Conference, pp 13/15–13/23

    Google Scholar 

  42. Mitola J (1995) The software radio architecture. IEEE Comm Mag 33(5):26–38

    Article  Google Scholar 

  43. Mitola J (2000) Cognitive radio: An integrated agent architecturefor software defined radio. PhD thesis, Royal Institute of Technology (KTH),Sweden

    Google Scholar 

  44. Mitola J (2000) Software Radio Architecture: Object-OrientedApproaches to Wireless Systems Engineering. Wiley, New York

    Google Scholar 

  45. Mitola J (2006) Cognitive Radio Architecture: The Engineering Foundations ofRadio XML. Wiley, New York

    Book  Google Scholar 

  46. Mitola J, Maguire GQ (1999) Cognitive radio: Making software radios morepersonal. IEEE Pers Commun 6(4):13–18

    Article  Google Scholar 

  47. Pfeifer R, Lungarella M, Iida F (2007) Self-organization, embodiment, andbiologically inspired robotics. Science 318(5853):1088–1093

    Article  Google Scholar 

  48. Reed JH (2002) Software Radio: A Modern Approach to Radio Engineering. PrenticeHall, New York

    Google Scholar 

  49. Regazzoni CS, Gandetto M (2007) Spectrum sensing: a distributed approach forcognitive terminals. IEEE J Sel Area Comm 25(3):546–557

    Article  Google Scholar 

  50. Renk T, Kloeck C, Burgkhardt D, Jondral FK, Grandblaise D, Gault S, Dunat JC(2007) Bio-inspired algorithms for dynamic resource allocation in cognitivewireless networks. In: International Conference on Cognitive Radio OrientedWireless Networks and Communications, Orlando, FL, USA, pp 351–356

    Google Scholar 

  51. Rieser CJ (2004) Biologically inspired cognitive radio engine model utilizingdistributed genetic algorithms for secure and robust wireless communicationsand networking. Phd thesis, Virginia State University

    Google Scholar 

  52. Shared Spectrum Company (2008) Web site. http://www.sharedspectrum.com/

  53. Spectrum Policy Task Force (2002) Report of the spectrumefficiency working group. Tech. rep., Federal Communications Commission

    Google Scholar 

  54. Spectrum Policy Task Force (2002) Report of the spectrum rightsand responsibilities working group. Tech. rep., Federal CommunicationsCommission

    Google Scholar 

  55. Srinivasa S, Jafar SA (2007) The throughput potential of cognitive radio: atheoretical perspective. IEEE Comm Mag 45(5):73–79

    Article  Google Scholar 

  56. Sterrit R, Bustard D (2003) Towards an autonomic computing environment. In:Proceedings of the 14th International Workshop on Database and Expert SystemsApplications, Prague, Czech Republic, pp 694–698

    Google Scholar 

  57. Sutton RS, Barto AG (1998) Reinforcement learning. The MIT Press, Cambridge,Massachusetts

    Google Scholar 

  58. Zhang H, Zhou X, Yazdandoost KY, Chlamtac I (2006) Multiple signal waveformsadaptation in cognitive ultra-wideband radio evolution. IEEE J Sel Area Comm24(4):878–884

    Article  Google Scholar 

  59. Zhao Q, Sadler BM (2007) A survey of dynamic spectrum access. IEEE Sig Proc Mag24(11):79–89

    Article  Google Scholar 

  60. Zhao Q, Tong L, Swami A (2005) Decentralized cognitive mac for dynamic spectrumaccess. In: Proceedings of the First IEEE International Symposium on NewFrontiers in Dynamic Spectrum Access Networks, Baltimore, USA, pp 224–232

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giacomo Oliveri .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag US

About this chapter

Cite this chapter

Oliveri, G., Ottonello, M., Regazzoni, C.S. (2009). Bio-inspired Cognitive Radio for Dynamic Spectrum Access. In: Zhang, Y., Yang, L., Denko, M. (eds) Autonomic Computing and Networking. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-89828-5_6

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-89828-5_6

  • Published:

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-387-89827-8

  • Online ISBN: 978-0-387-89828-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics