Skip to main content

Smart Environments for Occupancy Sensing and Services

  • Chapter
Handbook of Ambient Intelligence and Smart Environments

Abstract

The term smart environment refers to a physical space enriched with sensors and computational entities that are seamlessly and invisibly interwoven. A challenge in smart environments is to identify the location of users and physical objects. A smart environment provides location-dependent services by utilizing obtained locations. In many cases, estimating location depends on received signal strength or the relative location of other sensors in the environment. Although devices employed for location detection are evolving, identification of location is still not accurate. Therefore, n addition to devices or utilized physical phenomena, algorithms that enhance the accuracy of location are important. Furthermore, other aspects of utilizing location information need to be considered: who is going to name important places and how are the name ontologies used.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Addlesee, Jones, Livesey, Samaria (1997) The ORL active floor. IEEE Personal Communications 4(5):35–41

    Article  Google Scholar 

  2. Addlesee M, Curwen R, Hodges S, Newman J, Steggles P, Ward A, Hopper A (2001) Implementing a sentient computing system. IEEE Computer Magazine 34(8):50–56

    Google Scholar 

  3. Ashbrook, Starner (2003) Using GPS to learn significant locations and predict movement across multiple users. Pers Ubiquit Comput 7(5):275–286

    Article  Google Scholar 

  4. Bahl, Padmanabhan (2000) RADAR: an in-building rf-based user location and tracking system. In: IEEE INFOCOM, pp 775–784

    Google Scholar 

  5. Beigl (2000) Memoclip: A location based remembrance applicance. In: 2th International Symposium on Handheld and Ubiquitous Computing (HUC2000, Springer Press, pp 230–234

    Google Scholar 

  6. Bernardin K, Gehrig T, Stiefelhagen R (2006) Multi-and single view multiperson tracking for smart room environments. In: CLEAR, pp 81–92

    Google Scholar 

  7. Brown (1996) The stick-e document: a framework for creating context-aware applications. In: Proceedings of EP’96, Palo Alto, also published in it EP–odd, pp 259–272, URL http://www.cs.kent.ac.uk/pubs/1996/396

  8. Chen, Sohn, Chmelev, Haehnel, Hightower, Hughes, LaMarca, Potter, Smith, Varshavsky (2006) Practical metropolitan-scale positioning for gsm phones. In: Proc. Ubicomp 2006

    Google Scholar 

  9. Darrell T, Gordon G, Harville M, Woodfill J (1998) Integrated person tracking using stereo, color, and pattern de tection. In: Conf. Computer Vision and Pattern Recognition, pp 601–608

    Google Scholar 

  10. Dey A, Abowd G (2000) The context toolkit: Aiding the development of context-aware applications. In: Workshop on Software Engineering for Wearable and Pervasive Computing

    Google Scholar 

  11. Dey AK, Abowd GD (2000) Cybreminder: A context-aware system for supporting reminders. In: HUC ’00: Proceedings of the 2nd international symposium on Handheld and Ubiquitous Computing, Springer-Verlag, London, UK, pp 172–186

    Google Scholar 

  12. Eagle, Pentland (2006) Reality mining: Sensing complex social systems. Pers Ubiquit Comput 10:255–268

    Article  Google Scholar 

  13. Ekahau I (2002) Ekahau positioning engine 2.0. Tech. rep., Ekahau, Inc., technology White Paper

    Google Scholar 

  14. Fox, Hightower, Liao, Schulz, Borriello (2003) Bayesian filtering for location estimation. IEEE Pervasive Computing 2(3):24–33

    Article  Google Scholar 

  15. Getting (1993) The global positioning system. IEEE Spectrum 30(12):43–47

    Article  Google Scholar 

  16. Gezici S, Tian Z, Giannakis GB, Kobayashi H, Molisch AF, Poor HV, Sahinoglu Z (2005) Localization via ultra-wideband radios. IEEE Signal Processing Mag 22(4):70–84

    Article  Google Scholar 

  17. Gustafsson, Gunnarson, Bergman, Forssell, Jansson, Karlsson, Nordlund (2002) Particle filters for positioning, navigation and tracking. IEEE Trans Signal Processing 50:425–435

    Google Scholar 

  18. Harle, Hopper (2005) Deploying and evaluating a location-aware system. In: MobiSys ’05: Proceedings of the 3rd international conference on Mobile systems, applications, and services, ACM, New York, NY, USA, pp 219–232, DOI http://doi.acm.org/10.1145/1067170.1067194

    Chapter  Google Scholar 

  19. Harter A, Hopper A, Steggles P, Ward A, Webster P (1999) The anatomy of a context-aware application. In: Proceedings of the Fifth Annual ACM/IEEE International Conference on Mobile Computing and Networking (MOBICOM’99), Seattle, Washington, USA, pp 59–68

    Chapter  Google Scholar 

  20. Hightower, Borriello (2004) Particle filters for location estimation in ubiquitous computing: A case study. In: Lecture Notes in Computer Science. Ubicomp 2004, vol 3205/2004, pp 88–106

    Google Scholar 

  21. Hightower, Smith (2006) Practical lessons from place lab. IEEE Pervasive Computing 5(3):32.39

    Article  Google Scholar 

  22. Hightower, Consolvo, LaMarca, Smith, Hughes (2005) Learning and recognizing the places we go. In: Ubicomp 2005, pp 159–176

    Google Scholar 

  23. Intille SS, Larson K, Tapia EM, Beaudin J, Kaushik P, Nawyn J, Rockinson R (2006) Using a live-in laboratory for ubiquitous computing research. In: Proceedings of PERVASIVE 2006, pp 349–365

    Google Scholar 

  24. Jang JS, Sun CT, Mizutani E (1997) Neuro-Fuzzy and Soft Computing. Prentice Hall

    Google Scholar 

  25. Kang, Welbourne, Stewart, Borriello (2005) Extracting places from traces of locations. ACM SIGMOBILE Mobile Computing and Communications pp 58–68

    Google Scholar 

  26. Katsarakis N, Souretis G, Talantzis F, Pnevmatikakis A, Polymenakos L (2006) 3d audiovisual person tracking using kalman filtering and information theory. In: CLEAR, pp 45–54

    Google Scholar 

  27. Kidd CD, Orr R, Abowd GD, Atkeson CG, Essa IA, MacIntyre B, Mynatt E, Starner TE, Newstetter W (1999) The aware home: A living laboratory for ubiquitous computing research. In: Proceedings of the 2nd International Workshop on Cooperative Buildings (CoBuild’99)

    Google Scholar 

  28. Koho, Suutala, Seppänen, Röning (2004) Footstep pattern matching from pressure signals using segmental semi-markov models. In: Proceedings of 12th European Signal Processing Conference (EUSIPCO 2004), Vienna, Austria, pp 1609–1612

    Google Scholar 

  29. Krumm J, Harris S, Meyers B, Brumitt B, Hale M, Shafer S (2000) Multi-camera multi-person tracking for easyliving. In: Proceedings of the 3rd IEEE Workshop on Visual Surveillance, Dublin, Ireland

    Google Scholar 

  30. Krumm J, Cermak G, Horvitz E (2003) Rightspot: A novel sense of location for a smart personal object. In: Proceedings of International Conference on Ubiquitous Computing (UBICOMP)

    Google Scholar 

  31. Laasonen, Raento, Toivonen (2004) Adaptive on-device location recognition. In: LNCS 3001, Springer-Verlag, pp 287–304

    Google Scholar 

  32. LaMarca, Lara (2008) Location systems: An introduction to the technology behind location awareness. Synthesis Lectures on Mobile and Pervasive Computing, 122 p.

    Google Scholar 

  33. Lee JY, Scholtz RA (2002) Ranging in a dense multipath environment using an uwb radio link. IEEE J Select Areas Commun 20(9):1677–1683

    Article  Google Scholar 

  34. Liao, Patterson, Fox, Kautz (2007) Learning and inferring transportation routines. Artificial Intelligence 171:311–331

    Article  MATH  MathSciNet  Google Scholar 

  35. Marmasse, Schmandt (2000) Location-aware information delivery with commotion. In: Lecture Notes in Computer Science. Handheld and Ubiquitous Computing, Springer Berlin/Heidelberg, vol 1927/2000, pp 361–370

    Google Scholar 

  36. Minami M, Fukuju Y, Hirasawa K, Yokoyama S, Mizumachi M, Morikawa H, Aoyama T (2004) Dolphin: A practical approach for implementing a fully distributed indoor ultrasonic positioning system. In: Ubicomp 2004, pp 347–365

    Google Scholar 

  37. Misra, Enge (2006) Global Positioning System: Signals, Measurements, and Performance. Ganga-Jamuna Press, Lincoln, MA 01773

    Google Scholar 

  38. Murakita, Ikeda, Ishiguro (2004) Human tracking using floor sensors based on the markov chain monte carlo method. In: Proc. 17th Int. Conf. Pattern Recognition, IEEE, vol 4, pp 917–920

    Google Scholar 

  39. Newman, Clark (1999) Sulawesi: A wearable application integration framework. In: Proc. 3rd Int Symp Wearable Computers, pp 170–171

    Google Scholar 

  40. Nurmi, Bhattacharya (2008) Identifying meaningful places: The non-parametric way. In: LNCS 5013, Proc. Pervasive, Springer-Verlag Berlin Heidelberg, pp 111–127

    Google Scholar 

  41. Orr, Abowd (2000) The smart floor: A mechanism for natural user identification and tracking. In: Proc. 2000 Conf. Human Factors in Computing Systems (CHI), pp 275–276

    Google Scholar 

  42. Paajanen M, Lekkala J, Kirjavainen K (2000) Electromechanical film (EMFi) - a new multipurpose electret material. Sensors and actuators A 84(1-2)

    Google Scholar 

  43. Pirttikangas S, Porspakka JRS, Röning J (2004) Know your whereabouts. In: Proc. Communication Networks and Distributed Systems Modeling and Simulation Conference (CNDS’04), San Diego, California, USA

    Google Scholar 

  44. Pnevmatikakis A, Polymenakos L (2006) 2d person tracking using kalman filtering and adaptive background learning in a feedback loop. In: CLEAR, pp 151–160

    Google Scholar 

  45. Priyantha NB, Chakraborty A, Balakrishnan H (2000) The cricket location-support system. In: Proceedings of the 6th Annual ACM/IEEE International Conference on Mobile Computing and Networking (Mobicom 2000), Boston, MA, USA

    Google Scholar 

  46. Priyantha NB, Miu A, Balakrishnan H, Teller S (2001) The cricket compass for context-aware mobile applications. In: Proceedings of the 7th Annual ACM/IEEE International Conference on Mobile Computing and Networking (Mobicom 2001), Rome, Italy

    Google Scholar 

  47. Rodriguez, Lewis, Mason, Evans (2008) Footstep recognition for a smart home environment. International Journal of Smart Home

    Google Scholar 

  48. Sato T (2003) Robotic room: Human behavior measurement, behavior accumulation and personall behavioral adaptation by intelligent environment. In: Proceedings of the IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM 2003), pp 515–520

    Google Scholar 

  49. Sato T, Harada T, Mori T (2004) Environment-type robot system robotic room featured by behavior media behavior contents and behavior adaptation. IEEE/ASME Transaction on Mechatronics 9(3):529–534

    Article  Google Scholar 

  50. Sato T, Harada T, Mori T (2004) Robotic room: Networked robots system in configuration of room. In: Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) Network Robot System Workshop, pp 11–18

    Google Scholar 

  51. Shi Q, Kyperountas S, Correal NS, Niu F (2005) Performance analysis of relative location estimation for multihop wireless sensor networks. IEEE J Select Areas Commun 25(4):830–838

    Google Scholar 

  52. Smith A, Balakrishnan H, Goraczko M, yantha NP (2004) Tracking moving devices with the cricket location system. In: Proceedings of the 2nd international conference on Mobile systems, applications, and services (MobiSys ’04), pp 190–202

    Google Scholar 

  53. Smith K, Schreiber S, Potucek I, Beran V, Rigoll G, Gatica-Perez D (2006) 2d multi-person tracking: A comparative study in ami meetings. In: CLEAR, pp 331–344

    Google Scholar 

  54. Sohn, Li, Lee, Smith, Scott, Griswold (2005) Place-its: A study of location-based reminders on mobile phones. In: Ubicomp 2005, Springer, pp 232–250

    Google Scholar 

  55. Stenbit (2001) Gps sps performance standard. Tech. rep., The National Space-Based Positioning, Navigation, and Timing (PNT) Executive Committee

    Google Scholar 

  56. Suutala, Fujinami (2008) Gaussian process person identifier based on simple floor sensors. In: Proc 3rd European Conf Smart Sensing and Context (EuroSSC2008), Zurich, Switzerland

    Google Scholar 

  57. Suutala, Röning (2008) Methods for person identification on a pressure-sensitive floor: Experiments with multiple classifiers and reject option. Information Fusion Journal, Special Issue on Applications of Ensemble Methods 9:21–40, URL http://dx.doi.org/10.1016/j.inffus.2006.11.003

    Google Scholar 

  58. Vildjiounaite, Malm, Kaartinen, Alahuhta (2002) Location estimation indoors by means of small computing power devices, accelerometers, magnetic sensors, and map knowledge. In: Lecture Notes in Computer Science, Pervasive 2002, Springer-Verlag Berlin Heidelberg, pp 211–224

    Google Scholar 

  59. Want R, Hopper A, Veronica Falc a, Gibbons J (1992) The active badge location system. ACM Transactions on Information Systems 10(1):91–102

    Article  Google Scholar 

  60. Ward A (1998) Sensor-driven computing. PhD thesis, University of Cambridge

    Google Scholar 

  61. Ward A, Jones A, Hopper A (1997) A new location technique for the active office. IEEE Personal Communications 4(5):42–47

    Article  Google Scholar 

  62. Woodman, Harle (2008) Pedestrian localization for indoor environments. In: Proc. 10th Int. Conf. Ubiquitous Computing, pp 114–123

    Google Scholar 

  63. Yin, Yang, Ni (2005) Adaptive temporal radio maps for indoor location estimation. In: IEEE PerCom, pp 85–94

    Google Scholar 

  64. Yun, Lee, Woo, Ryu (2003) The user identification system using walking pattern over the ubifloor. In: Proc. Int. Conf. Control, Automation, and Systems (ICCAS)

    Google Scholar 

  65. Zhu Y, Shareef A (2006) Comparisons of three kalman filter tracking algorithms in sensor network. In: International Workshop on Networking, Architecture, and Storages 2006 (IWNAS’06)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Susanna Pirttikangas , Yoshito Tobe or Niwat Thepvilojanapong .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Pirttikangas, S., Tobe, Y., Thepvilojanapong, N. (2010). Smart Environments for Occupancy Sensing and Services. In: Nakashima, H., Aghajan, H., Augusto, J.C. (eds) Handbook of Ambient Intelligence and Smart Environments. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-93808-0_31

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-93808-0_31

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-387-93807-3

  • Online ISBN: 978-0-387-93808-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics