Skip to main content

Information-Theoretic Methods in Chemical Graph Theory

  • Chapter
  • First Online:
Towards an Information Theory of Complex Networks

Abstract

During recent years, information theory has been used extensively in chemistry for describing chemical structures and providing good correlations between physicochemical and structural properties. In this chapter, we present a survey on information-theoretic methods which are used in chemical graph theory.

MSC2000 Primary 62B10; Secondary 92E10, 05C90, 94A17, 94A15.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ashby, W.R.: An Introduction to Cybernetics. Wiley, New York (1956)

    Book  MATH  Google Scholar 

  2. Aslangul, C., Constanciel, R., Daudel, R., Kottis, P.: Aspects of the localizability of electrons in atoms and molecules: Loge theory and related methods. Adv. Quant. Chem. 6, 93–141 (1972)

    Article  Google Scholar 

  3. Aslangul, C., Constanciel, R., Daudel, R., Esnault, L., Ludena, E.: The Loge theory as a starting point for variational calculations. I. General formalism. Int. J. Quant. Chem. 8, 499–522 (1974)

    Article  Google Scholar 

  4. Balaban, A.T., (ed.): Chemical Applications of Graph Theory. Academic, New York (1976)

    Google Scholar 

  5. Balaban, A.T.: Highly discriminating distance-based topological indices. Chem. Phys. Lett. 89, 399–404 (1982)

    Article  MathSciNet  Google Scholar 

  6. Balaban, A.T.: Topological indices based on topological distances in molecular graphs. Pure Appl. Chem. 55, 199–206 (1983)

    Article  Google Scholar 

  7. Balaban, A.T.: Applications of graph theory in chemistry. J. Chem. Inf. Comput. Sci. 25, 334–343 (1985)

    Article  Google Scholar 

  8. Balaban, A.T., Harary, F.: The characteristic polynomial does not uniquely determine the topology of a molecule. J. Chem. Doc. 11, 258–259 (1971)

    Article  Google Scholar 

  9. Balaban, A.T., Chirac, A., Motoc, I., Simon, Z.: Steric Fit in Quantitative Structure–Activity Relationships. Lecture Notes in Chemistry. Springer, Berlin (1980)

    Book  Google Scholar 

  10. Balaban, A.T., Basak, S.C., Colburn, T., Grunwald, G.D.: Correlation between structure and normal boiling points of Haloalkanes C1–C4 using neural networks. J. Chem. Inf. Comp. Sci. 34, 1118–1121 (1994)

    Article  Google Scholar 

  11. Balaban, A.T.: QSAR and computational methods in drug discovery, In: Meyers, R.A. (ed.) Encyclopedia of Analytical Chemistry, vol. 8, pp. 7288–7311. Wiley, Chichester (2000)

    Google Scholar 

  12. Ban, T., Fujita, T.: Mathematical approach to structure-activity study of sympathomimetic amines. J. Med. Chem. 12, 353–356 (1969)

    Article  Google Scholar 

  13. Basak, S.C.: Information theoretic indices of neighborhood complexity and their applications, In: Devillers, J., Balaban, A.T. (eds.) Topological Indices and Related Descriptors in QSAR and QSPR, pp. 563–593. Gordon and Breach Science Publishers, The Netherlands (1999)

    Google Scholar 

  14. Basak, S.C., Roy, A.B., Ghosh, J.J.: Study of the structure–function relationship of pharmacological and toxicological agents using information theory, In: Avula, X.J.R., Bellman, R., Luke, Y.L., Rigler, A.K. (eds.) Proceeding of the 2nd International Conference on Mathematical Modelling, vol.2, pp. 851–856. University of Missouri–Rolla, Rolla, Missouri (1980)

    Google Scholar 

  15. Basak, S.C., Magnusson, V.R.: Molecular topology and narcosis: a quantitative structure-activity relationship (QSAR) study of alcohols using complementary informartion content (CIC). Arzneim. Forsch. Drug Res. 33, 501–503 (1983)

    Google Scholar 

  16. Basak, S.C., Niemi, G.J., Veith, G.D.: Predicting properties of molecules using graph invariants. J. Math. Chem. 7, 243–272 (1991)

    Article  Google Scholar 

  17. Basak, S.C., Bertelsen, S., Grunwald, G.D.: Application of graph theoretical parameters in quantifying molecular similarity and structure–activity studies. J. Cem. Inf. Comput. Sci. 34, 270–276 (1993)

    Article  Google Scholar 

  18. Basak, S.C., Grunwald, G.D.: Use of graph invariants, volume and total surface area in predicting boiling point of alkanes. Math. Model. Sci. Comp. 2, 735–740 (1993)

    Google Scholar 

  19. Basak, S.C., Grunwald, G.D.: Molecular similarity and estimation of molecular properties. J. Chem. Inf. Comput. Sci. 35, 366–372 (1995)

    Article  Google Scholar 

  20. Basak, S.C., Balaban, A.T., Grunwald, G.D., Gute, B.D.: Topological indices: their nature and mutual relatedness. J. Chem. Inf. Comput. Sci. 40, 891–898 (2000)

    Article  Google Scholar 

  21. Basak, S.C., Gute, B.D., Balaban, A.T. Interrelationship of major topological indices evidenced by clustering. Croat. Chem. Acta CCACAA 77, 331–344 (2004)

    Google Scholar 

  22. Bernstein, R.B., Levine, R.D.: Entropy and chem. change. I. Characterization of product (and reactant) energy distributions in reactive molecular collisions: information and entropy deficiency. J. Chem. Phys. 57, 434–449 (1972)

    Article  Google Scholar 

  23. Ben-Shaul, A., Levine, R.D., Bernstein, R.B.: Entropy and chem. change. II. Analysis of product energy distributions: temperature and entropy deficiency. J. Chem. Phys. 57, 5427–5447 (1972)

    Article  Google Scholar 

  24. Bonchev, D.: Information indices for atoms and molecules. MATCH Commun. Math. Comput. Chem. 7, 65–113 (1979)

    Google Scholar 

  25. Bonchev, D.: Information theory interpretation of the Pauli principle and Hund rule. Int. J. Quant. Chem. 19, 673–679 (1981)

    Article  Google Scholar 

  26. Bonchev, D.: Information–theoretic Indices for Characterization of Chemical Structures. Research Studies Press, Chichester (1983)

    Google Scholar 

  27. Bonchev, D., Kamenski, D., Kamenska, V.: Symmetry and information content of chemical structures. Bull. Math. Biophys. 38, 119–133 (1976)

    Article  Google Scholar 

  28. Bonchev, D., Trinajstić, N.: Information theory, distance matrix, and molecular branching. J. Chem. Phys. 38, 4517–4533 (1977)

    Article  Google Scholar 

  29. Bonchev, D., Trinajstić, N.: On topological characterization of molecular branching. Int. J. Quant. Chem. S12, 293–303 (1978)

    Google Scholar 

  30. Bonchev, D., Knop, J.V., Trinajstić, N.: Mathematical models of branching. MATCH Commun. Math. Comput. Chem. 6, 21–47 (1979)

    Google Scholar 

  31. Bonchev, D., Mekenyan, O., Trinajstić, N.: Topological characterization of cyclic structure. Int. J. Quant. Chem. 17, 845–893 (1980)

    Article  Google Scholar 

  32. Bonchev, D., Mekenyan, O., Trinajstić, N.: Isomer discrimination by topological information approach. J. Comput. Chem. 2, 127–148 (1981)

    Article  MathSciNet  Google Scholar 

  33. Bonchev, D., Trinajstić, N.: Chemical information theory. Structural Aspects. Int. J. Quant. Chem. Symp. 16, 463–480 (1982)

    Google Scholar 

  34. Brillouin, L.: Science and Information Theory. Academic, New Nork (1956)

    Book  MATH  Google Scholar 

  35. Chapman, N.B., Shorter J. (eds.): Correlation Analysis in Chemistry. Plenum, New York (1978)

    Google Scholar 

  36. Crum-Brown, A., Fraser, T.R.: Trans Royal Soc. Edinburgh 25, 151–203, 257–274, 693–739 (1868-1869)

    Google Scholar 

  37. Daudel, R., Bader, R.F., Stephens, M.E., Borett, D.S.: The electron pair in chemistry. Can. J. Chem. 52, 1310–1320 (1974)

    Article  Google Scholar 

  38. Dehmer, M., Borgert, S., Emmert–Streib, F.: Entropy bounds for hierarchical molecular networks. PLoS ONE 3, e3079 (2008)

    Google Scholar 

  39. Dehmer, M., Emmert–Streib, F.: Structural information content of networks: graph entropy based on local vertex functionals. Comput. Biol. Chem. 32, 131–138 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  40. Devillers, J. (ed.): Genetic Algorithms in Molecular Modeling (Principles of QSAR and Drug Design). Academic, London (1996)

    Google Scholar 

  41. Devillers, J., Balaban, A.T. (eds.).: Topological Indices and Related Descriptors in QSAR and QSPR. Gordon and Breach, Amsterdam, Netherlands (1999)

    Google Scholar 

  42. Diudea, M.V., Gutman, I.: Wiener–type topological indices. Croat. Chem. Acta CCACAA 71, 21–51 (1998)

    Google Scholar 

  43. Dobrynin, A.A.: Discriminating power of the Schultz index for cata–condensed benzenoid graphs. MATCH Commun. Math. Comput. Chem. 38, 19–32 (1998)

    MATH  Google Scholar 

  44. Doyle, J.K., Graver, J.E.: Mean distance in graph. Discrete Math. 17, 147–154 (1977)

    Article  Google Scholar 

  45. Dubois,J.E., Laurent, D., Aranda, A.: Perturbation of environments which are limited, concentric and ordered. J. Claim. Phys. 11, 1608–1616 (1973)

    Google Scholar 

  46. Dubois, J.E.: DARC system in chemistry, In: Wipke, W.T., Heller, S., Fellmann, R., Hyde, E. (eds.) Computer Representation and Manipulation of Chemical Information, pp. 239–263. Wiley, New York (1974)

    Google Scholar 

  47. Entringer, R.C., Jackson, D.E., Snyder, D.A.: Distance in graphs. Czechoslovak Math. J. 2, 283–297 (1976)

    Google Scholar 

  48. Entringer, R.C.: Distance in graphs: trees. J. Combin. Math. Combin. Comput. 24, 65–84 (1997)

    MathSciNet  MATH  Google Scholar 

  49. Fisher, E.: Einfluss der Configuration auf die Wirkung der Enzyme. Chem. Ber. 74, 70–77 (1986)

    Google Scholar 

  50. Fratev, F., Bonchev, D., Enchev, V.: A theoretical information approach to ring and total aromaticity in ground and excited states. Croat. Chem. Acta CCACAA 53, 545–554 (1980)

    Google Scholar 

  51. Fratev, F., Enchev, V., Polansky, O.E., Bonchev, D.: A theoretical-information study on the electron delocalization (aromaticity) of annulenes with and without bond alternation. THEOCHEM 88, 105–118 (1982)

    Article  Google Scholar 

  52. Free, S.M., Wilson, I.W.: A mathematical contribution to structure–activity studies. J. Med. Chem. 7, 395–399 (1964)

    Article  Google Scholar 

  53. Fujita, T., Ban, T.: Structure-activity relation 3. Structure-activity study of phenethylamines as substrates of biosynthetic enzymes of sympathetic transmitters. J. Med. Chem. 14, 148–152 (1971)

    Google Scholar 

  54. Gutman, I.: Selected properties of the Schultz molecular index. J. Chem. Inf. Comput. Sci. 34, 1087–1089 (1994)

    Article  Google Scholar 

  55. Gutman, I., Cyvin, S.J.: Introduction to the Theory of Benzenoid Hydrocarbons. Springer, Berlin (1989)

    Book  MATH  Google Scholar 

  56. Gutman, I., Cyvin, S.J. (eds): Advances in the Theory of Benzenoid Hydrocarbons. Springer, Berlin (1990)

    Book  Google Scholar 

  57. Hansch, C., Schaeffer, J., Kerley, R. Alcohol dehydrogenase structure–activity relationships. J. Biol. Chem. 247, 4703–4710 (1972)

    Google Scholar 

  58. Hansch, C.: On the predictive value of QSAR. In: Buisman, K. (ed.) Biological Activity and Chemical Structure, pp.47–61. Elsevier, Amsterdam (1977)

    Google Scholar 

  59. Hansch, C.: Use of quantitative structure-activity relationships (QSAR) in drug design (review). Pharm. Chem. J. 14, 678–691 (1980)

    Article  Google Scholar 

  60. Hansch, C.: The physicochemical approach to drug design and discovery (QSAR). Drug Dev. Res. 1, 267–309 (1981)

    Article  Google Scholar 

  61. Hansch C., Leo A.: Exploring QSAR Fundamentals and Applications in Chemistry and Biology. ACS, Washington DC, USA (1995)

    Google Scholar 

  62. Harary, F.: Graph Theory. Addison–Wesley, Reading, MA (1969)

    Google Scholar 

  63. Hernandez-Gallegos, Z., Lehmann, F.P.A. : A Free–Wilson/Fujita–Ban analysis and prediction of the analgesic potency of some 3-hydroxy- and 3-methoxy-N-alkylmorphinan-6-one opioids. J. Med. Chem. 33, 2813–2817 (1990)

    Article  Google Scholar 

  64. Hosoya, H.: Topological index. A newly proposed quantity characterizing the topological nature of structural isomers of hydrocarbons. Bull. Chem. Soc. Jpn. 44, 2332–2339 (1971)

    Google Scholar 

  65. Johnson, M., Basak, S.C., Maggiora, G.: A characterization of molecular similarity methods for property prediction. Math. Comput. Modell. 11, 630–6634 (1988)

    Article  MathSciNet  Google Scholar 

  66. Johnson, M., Maggiora, G.: Concepts and Applications of Molecular Similarity. Wiley, New York (1990)

    Google Scholar 

  67. Karelson, M.: Molecular descriptors in QSAR/QSPR. Wiley, New York (2000)

    Google Scholar 

  68. Karlitzky, A.R., Lobanov, V.S.: CODESSA, Version 5.3, University of Florida, Gainesville (1994)

    Google Scholar 

  69. Kier, L.B., Hall, L.H.: Molecular Connectivity in Chemistry and Drug Research. Academic, New York (1976)

    Google Scholar 

  70. Kier, L.B., Hall, L.H.: Derivation and significance of valence molecular connectivity. J. Pharm. Sci. 70, 583–589 (1981)

    Article  Google Scholar 

  71. Kier, L.B., Hall, L.H.: Molecular Connectivity in Structure–Activity Analysis. Research Studies Press, Letchworth (1986)

    Google Scholar 

  72. King, R.B., Rouvray, D.H. (eds.): Graph Theory and Topology in Chemistry. Elsevier, Amsterdam (1987)

    Google Scholar 

  73. Kolmogorov, A.N.: On logic basis of information theory. Probl. Peredachi Inf. 5, 3–7 (1969)

    MATH  Google Scholar 

  74. Konstantinova, E.V., Paleev, A.A.: Sensitivity of topological indices of polycyclic graphs. Vychisl. Sistemy 136, 38–48 (1990)

    MathSciNet  MATH  Google Scholar 

  75. Konstantinova, E.V.: The discrimination ability of some topological and information distance indices for graphs of unbranched hexagonal systems. J. Chem. Inf. Comput. Sci. 36, 54–57 (1996)

    Article  Google Scholar 

  76. Konstantinova, E.V., Diudea, M.V.: The Wiener polynomial derivatives and other topological indices in chemical research. Croat. Chem. Acta CCACAA 73, 383–403 (2000)

    Google Scholar 

  77. Konstantinova, E.V., Vidyuk, M.V.: Discriminating tests of information and topological indices. Animals and trees. J. Chem. Inf. Comp. Sci. 43, 1860–1871 (2003)

    Article  Google Scholar 

  78. Kubinyi, H.: Free–Wilson Analysis. Theory, applications and its relationship to Hansch analysis. Quant. Struct. Act. Relat. 7, 121–133 (1988)

    Google Scholar 

  79. Kubinyi, H.: QSAR: Hansch Analysis and Related Approaches. In: Mannhold, R., Kroogsgard-Larsen, P., Timmerman, H. (eds.) Methods and Principles in Medicinal Chemstry. VCH, Weinheim (1993)

    Google Scholar 

  80. Lajiness, M.S.: Molecular similarity–based methods for selecting compounds for screening. In: Rouvray, D.H. (ed.) Computational Chemical Graph Theory. Nova Science Publishers, New York (1990)

    Google Scholar 

  81. Magnuson, V.R., Harris, D.K., Basak, S.C.: Topological indices based on neighborhood symmetry: chemical and biological application. In: King, R.B. (ed.) Chemical Applications of Topology and Graph Theory, pp. 178–191. Elsevier, Amsterdam (1983)

    Google Scholar 

  82. Marshall, C.W.: Applied Graph Theory. Wiley-Interscience, New York (1971)

    MATH  Google Scholar 

  83. Mekenyan, O., Bonchev, D.: OASIS method for predicting biological activity of chemical copounds. Acta Pharm. Jugosl. 36, 225–237 (1986)

    Google Scholar 

  84. Mekenyan, O., Mercier, C., Bonchev, D., Dubois, J.E.: Comparative study of DARC/PELCO and OASIS methods. II. Modelling PNMT inhibitory potency of benzylamines and amphetamines. Eur. J. Med. Chem. 28, 811–819 (1993)

    Google Scholar 

  85. MolConnZ, Ver.4.05, Hall Ass. Consult., Quincy, MA (2003)

    Google Scholar 

  86. Morgan, H.L.: The generation of a unique machine description of chemical structures – a technique developed at chemical abstracts service. J. Chem. Doc. 5, 107–113 (1965)

    Article  Google Scholar 

  87. Morovitz, H.: Some order–disorder considerations in living systems. Bull. Math. Biophys. 17, 81–86 (1955)

    Article  Google Scholar 

  88. Mowshovitz, A.: The information content of digraphs and infinite graphs. Bull. Math. Biophys. 30, 225–240 (1968)

    Article  MathSciNet  Google Scholar 

  89. Mowshovitz, A.: An index of the relative complexity of a graph. Bull. Math. Biophys. 30, 175–204 (1968)

    Article  MathSciNet  Google Scholar 

  90. Mowshovitz, A.: Graphs with prescribed information content. Bull. Math. Biophys. 30, 387–414 (1968)

    Article  MathSciNet  Google Scholar 

  91. Mowshovitz, A.: Entropy measures and graphical structure. Bull. Math. Biophys. 30, 533–546 (1968)

    Article  MathSciNet  Google Scholar 

  92. Nekrasov, Yu.S., Tepfer, E.E., Sukharev, Yu.N.: On the relationship between the mass–spectral and structural indices of arylsilanes. Russ. Chem. Bull. 42, 343–346 (1993)

    Article  Google Scholar 

  93. Nekrasov, Yu.S., Sukharev, Yu.N., Molgacheva, N.S., Tepfer, E.E.: Generalized characteristics of mass–spectra of aromatic compounds and their correlation with the constants of substituents. Russ. Chem. Bull. 42, 1986–1990 (1993)

    Article  Google Scholar 

  94. Nekrasov, Yu.S., Sukharev, Yu.N., Tepfer, E.E., Molgacheva, N.S.: Establishment of correlations between the structure and reactivity of molecules in the gas phase based on information theory. Russ. Chem. Bull. 45, 2542–2546 (1996)

    Article  Google Scholar 

  95. Nekrasov, Yu.S., Sukharev, Yu.N., Tepfer, E.E., Yakushin, S.: Electron impact mass spectra data processing for evaluation of gas–phase reactivity of cymantrene (tricarbonyl η5–cyclopentadienylmanganese) derivatives. Eur. J. Mass Spectrom. 8, 247–251 (2002)

    Article  Google Scholar 

  96. Nekrasov, Yu.S., Sukharev, Yu.N., Tepfer, E.E.: Determination of spectrum–structure correlations based on integral parameters of mass–spectra. J. Analyt. Chem. 20, 1035–1037 (2005)

    Article  Google Scholar 

  97. Nikolić, S., Trinajstić, N., Mihalić, Z.: The Wiener index: developments and applications. Croat. Chem. Acta CCACAA 68, 105–129 (1995)

    Google Scholar 

  98. Platt, J.R.: Prediction of isomeric differences in paraffin properties. J. Phys. Chem. 56, 328–336 (1952)

    Article  Google Scholar 

  99. Purcell, W.P., Bass, G.E., Clayton, J.M.: Strategy in Drug Design. A Molecular Guide to Biological Activity. Wiley–lnterscience, New York (1973)

    Google Scholar 

  100. Quintas, L.V., Slater, P.J.: Pairs of non–isomorphic graphs having the same path degree sequence. MATCH Commun. Math. Comput. Chem. 12, 75–86 (1981)

    MATH  Google Scholar 

  101. Randić, M.: On characterization of molecular branching. J. Am. Chem. Soc. 69, 6609–6615 (1975)

    Article  Google Scholar 

  102. Randić, M.: Characterization of atoms, molecules and classes of molecules based on paths enumerations. Proc. Bremen Konferenz zur Chemie Univ. Bremen. 2, 5–64 (1979)

    MathSciNet  Google Scholar 

  103. Randić, M.: On molecular identification numbers. J. Chem. Inf. Comput. Sci. 24, 164–175 (1984)

    Article  Google Scholar 

  104. Randić, M.: Generalized molecular descriptors. J. Math. Chem. 7, 155–168 (1991)

    Article  Google Scholar 

  105. Randić, M., Trinajstić, N.: Composition as a method for data redustion: Application to carbon-13 NMR chemical shifts. Theor. Chim. Acta 73, 233–246 (1988)

    Article  Google Scholar 

  106. Rashevsky, N.: Life, information theory and topology. Bull. Math. Biophys. 17, 229–235 (1955)

    Article  MathSciNet  Google Scholar 

  107. Rashevsky, N.: Life, information theory, probability and physics. Bull. Math. Biophys. 22, 351–364 (1960)

    Article  MathSciNet  Google Scholar 

  108. Raychaudhary, C., Ray, S.K., Ghosh, J.J., Roy, A.B., Basak, S.C.: Discrimination of isomeric structures using information theoretic topological indices. J. Comput. Chem. 5, 581–588 (1984)

    Article  Google Scholar 

  109. Razinger, M., Chretien, J.R., Dubois, J.K.: Structural selectivity of topological indices in alkane series. J. Chem. Inf. Comput. Sci. 25, 23–27 (1985)

    Article  Google Scholar 

  110. Romero, D.L., Busso, M., Tan, C.K., Reusser, F., Palmer, J.R., Poppe, S.M., Aristoff, P.A., Downey, K.M., So, A.G., Resnick, L., Tarpley, W.G.: Nonnucleoside reverse transcriptase inhibitors that potently and specifically block human immunodeficiency virus type I replication. Proc. Natl. Acad. Sci. USA. 88, 8806–8810 (1991)

    Article  Google Scholar 

  111. Rouvray, D.H.: Should we have designs on topological indices? In: Chemical applications of topology and graph theory. In: King, R.B. (ed.) Studies in Physical and Theoretical Chemistry. Elsevier, Amsterdam (1983)

    Google Scholar 

  112. Rouvray, D.H.: The limits of applicability of topological indices. J. Mol. Struc. (Theochem) 185, 187–201 (1989)

    Article  Google Scholar 

  113. Rouvray, D.H., Balaban, A.T.: Chemical applications of graph theory. In: Wilson, R.J., Beineke, L.W. (eds.) Applications of Graph Theory, pp. 177–221. Academic, New York (1979)

    MATH  Google Scholar 

  114. Rouvray, D.H., Bonchev, D.: Chemical Graph Theory: Introduction and Fundamentals. Abacus Press, Tunbridge Wells, Kent (1991)

    MATH  Google Scholar 

  115. Schaad, L.J., Hess (Jr.) B.A., Purcell, W.P., Cammarata, A., Franke, R., Kubinyi, H.: Compatibility of the Free–Wilson and Hansch quantitative structure–activity relations. J. Med. Chem. 24(7), 900–901 (1981)

    Article  Google Scholar 

  116. Selassie, C.D.: History of Quantitative Structure–Activity Relationships, In: Abraham, D.J. (ed.) Burger’s Medicinal Chemistry and Drug Discovery, pp. 1–48. Wiley, New York (2003)

    Google Scholar 

  117. Shannon, C., Weaver, W.: Mathematical Theory of Communications. University of Illinois, Urbana (1949)

    MATH  Google Scholar 

  118. Skorobogatov, V.A., Konstantinova, E.V., Nekrasov, Yu.S., Sukharev, Yu.N., Tepfer, E.E.: On the correlation between the molecular information topological and mass–spectra indices of organometallic compounds. MATCH Commun. Math. Comput. Chem. 26, 215–228 (1991)

    Google Scholar 

  119. Slater, P.J.: Counterexamples to Randić’s conjecture on distance degree sequences for trees. J. Graph Theory 6, 89–92 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  120. Spialter, L.: The atom connectivity matrix (ACM) and its charactereistic polynimial (ACMCP): a new computer–oriented chemical nomenclature. J. Am. Chem. Soc. 85, 2012–2013 (1963)

    Article  Google Scholar 

  121. Spialter, L.: The atom connectivity matrix (ACM) and its charactereistic polynimial (ACMCP). J. Chem. Doc. 4, 261–269 (1964)

    Article  Google Scholar 

  122. Spialter, L.: The atom connectivity matrix characteristic polynimial (ACMCP) and its physico–geometric (topological) significance. J. Chem. Doc. 4, 269–274 (1964)

    Article  Google Scholar 

  123. Stuper, A., Brugger, W., Jurs, P.: Computer Assisted Studies of Chemical Structure and Biological Function. Wiley, New York (1979)

    Google Scholar 

  124. Sukharev, Yu.N., Nekrasov, Yu.S., Molgacheva, N.S., Tepfer, E.E.: Computer processing and interpretation of mass–spectral information. Part IX - Generalized characteristics of mass–spectra. Org. Mass Spectrom. 28, 1555–1561 (1993)

    Article  Google Scholar 

  125. Sylvester, J.J.: On an application of the new atomic theory to the graphical representation of the invariants and covariants of binary quantics, with three appendices. Am. J. Math. 1, 64–125 (1878)

    Article  MathSciNet  MATH  Google Scholar 

  126. Todeschini, R., Consonni, V.: Handbook of Moleculat Descriptors. Wiley, Weinheim, Germany (2000)

    Book  Google Scholar 

  127. Todeschini, R., Consonni, V., Mauri, A., Pavan, M.: DRAGON – Software for the calculation of molecular descriptors. Ver.5.4 for Windows, Talete srl, Milan, Italy (2006)

    Google Scholar 

  128. Trinajstić, N.: Chemical Graph Theory, 2nd edn. (revised). CRC Press, Boca Raton, FL (1992)

    Google Scholar 

  129. Trucco, E.: A note of the information content of graphs. Bull. Math. Biophys. 17, 129–135 (1956)

    Article  MathSciNet  Google Scholar 

  130. Trucco, E.: On the informational content of graphs-compound symbols. Different states for each point. Bull. Math. Biophys. 18, 237–245 (1956)

    Article  MathSciNet  Google Scholar 

  131. Valentinuzzi, M., Valentinuzzi, M.E.: Information content of chemical structures and some possible biological applications. Bull. Math. Biophys. 25, 11–27 (1963)

    Article  Google Scholar 

  132. Wiener, H.: Structural determination of paraffin boiling points. J. Am. Chem. Soc. 69, 17–20 (1947)

    Article  Google Scholar 

  133. Wiener, H.: Vapor pressure–temperature relationships among the branched paraffin hydrocarbons. J. Phys. Chem. 52, 425–430 (1948)

    Article  Google Scholar 

  134. Wiener, H.: Relation of the physical properties of the isomeric alkanes to molecular structure. J. Phys. Chem. 52, 1082–1089 (1948)

    Article  Google Scholar 

  135. Yousefi-Azari, H., Ashrafi, A.R., Khalifeh, M.H.: Topological indices of nanotubes, nanotori and nanostars. Dig. J. Nanomater. Bios. 3, 251–255 (2008)

    Google Scholar 

  136. Zhou, Bo; Trinajstic, N.: Bounds on the Balaban index. Croatia Chemica Acta CCACCA 81, 319–323 (2008)

    Google Scholar 

Download references

Acknowledgment

The research was supported by the RFBR grant 09–01–00244.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elena Konstantinova .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Konstantinova, E. (2011). Information-Theoretic Methods in Chemical Graph Theory. In: Dehmer, M., Emmert-Streib, F., Mehler, A. (eds) Towards an Information Theory of Complex Networks. Birkhäuser, Boston, MA. https://doi.org/10.1007/978-0-8176-4904-3_5

Download citation

Publish with us

Policies and ethics