Skip to main content

The Central Role of Information Theory in Ecology

  • Chapter
  • First Online:
Towards an Information Theory of Complex Networks

Abstract

Information theory (IT) is predicated upon that which largely eludes physics – the absence of something. The capacity for IT to portray both presence and absence in comparable quantitative fashion makes it indispensable to ecology. IT has been applied to ecology along two separate lines: (1) it has been used to quantify the distribution of stocks and numbers of organisms and (2) it has been used to quantify the pattern of interactions of trophic processes. By and large, the first endeavor has resulted in relatively few insights into ecosystem dynamics and has generated much ambiguity and disappointment, so that most ecologists remain highly skeptical about the advisability of applying IT to ecology. By contrast, the second (and less well-known) application has shed light on the possibility that ecosystem behavior is the most palpable example of a purely natural “infodynamics” that transcends classical dynamics, but remains well within the realm of the quantifiable.

MSC2000 Primary 92B99; Secondary 94A17, 90B70, 93B52, 93D21, 49Q12.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    The term entropy, chosen by Shannon, is retained only because of the ubiquity of its use. No relationship to thermodynamical entropy is implied thereby.

References

  1. Abramson, N.: Information Theory and Coding. McGraw-Hill, New York (1963)

    Google Scholar 

  2. Bateson, G.: Steps to an Ecology of Mind. Ballantine Books, New York (1972)

    Google Scholar 

  3. Boltzmann, L.: Weitere Studien ueber das Waermegleichtgewicht unter Gasmolekuelen. Wien. Ber. 66, 275–370 (1872)

    Google Scholar 

  4. Brooks, D.R., Wiley, E.O.: Evolution as Entropy: Toward a Unified Theory of Biology. University Chicago Press, Chicago (1986)

    Google Scholar 

  5. Collier, J.D.: Intrinsic information. In: Hanson, P.P. (ed.) Information, Language and Cognition: Vancouver Studies in Cognitive Science, Vol. 1, pp. 390–409. University of British Columbia Press, Vancouver (1990)

    Google Scholar 

  6. Deacon, T.W.: Emergence: The hole at the wheel’s hub. In: Clayton, P., Davies, P. (eds.) The Re-emergence of Emergence: The Emergentist Hypothesis, pp. 111–149. Oxford University Press, London (2006)

    Google Scholar 

  7. Elsasser, W.M.: A form of logic suited for biology. In: Robert Rosen (ed.) Progress in Theoretical Biology, pp. 23–62. Academic Press, New York (1981)

    Chapter  Google Scholar 

  8. Gardner, M.R., Ashby, W.R.: Connectance of large dynamic (cybernetic) systems: critical values for stability. Nature 228, 784–784 (1970)

    Article  Google Scholar 

  9. Goerner, S.J., Lietaer, B., Ulanowicz, R.E., Gomez, R.: Quantifying economic sustainability: implications for free-enterprise theory, policy and practice. Ecol. Econ. 69, 76–81 (2009)

    Article  Google Scholar 

  10. Hastings, H.M.: Stability of large systems. BioSystems 17, 171–177 (1984)

    Google Scholar 

  11. Hoffmeyer, J.: Signs of Meaning in the Universe. Indiana University Press, Bloomington, Indiana (1993)

    Google Scholar 

  12. Hoffmeyer, J.: Biosemiotics: Signs of Life and Life of Signs. University of Scranton Press, Scranton, Pennsylvannia (2008)

    Google Scholar 

  13. Holling, C.S.: The resilience of terrestrial ecosystems: local surprise and global change. In: Clark, W.C., Munn, R.E. (eds.) Sustainable Development of the Biosphere, pp. 292–317. Cambridge University Press, Cambridge, UK (1986)

    Google Scholar 

  14. Jørgensen, S.E., Fath, B.D., Bastianoni, S., Marques, J., Mueller, F., Nors-Nielsen, S., Patten, B.C., Tiezzi, E., Ulanowicz, R.E.: A New Ecology: Systems Perspective. Elsevier, Amsterdam (2007)

    Google Scholar 

  15. Lindeman, R.L.: The trophic-dynamic aspect of ecology. Ecology 23, 399–418 (1942)

    Google Scholar 

  16. MacArthur, R.: Fluctuations of animal populations, and a measure of community stability. Ecology 36, 533–536 (1955)

    Article  Google Scholar 

  17. Margalef, R.: La teoria de la informacion en ecologia. Mem. Real Acad. Ciencias Artes Barcelona 32(13), 373–449 (1957)

    Google Scholar 

  18. Margalef, R.: Communication of structure in planktonic populations. Limnol. Oceanog. 6, 124–128 (1961)

    Article  Google Scholar 

  19. May, R.M.: Stability and Complexity in Model Ecosystems, p. 235. Princeton University Press, Princeton, NJ (1973)

    Google Scholar 

  20. Odum, E.P.: Fundamentals of Ecology. Saunders, Philadelphia (1953)

    Google Scholar 

  21. Odum, E.P.: Fundamentals of Ecology, 2nd edn. Sanders, Philadelphia, PA (1959)

    Google Scholar 

  22. Odum, E.P.: The strategy of ecosystem development. Science 164, 262–270 (1969)

    Google Scholar 

  23. Odum, H.T., Pinkerton, R.C.: Time’s speed regulator: the optimum efficiency for maximum power output in physical and biological systems. Am. Sci. 43, 331–343 (1955)

    Google Scholar 

  24. Pahl-Wostl, C.: Information theoretical analysis of functional temporal and spatial organization in flow networks. Math. Comput. Modell. 16(3), 35–52 (1992)

    Article  MATH  Google Scholar 

  25. Pielou. E.C.: An Introduction to Mathematical Ecology. Wiley-Interscience, New York (1969)

    Google Scholar 

  26. Rutledge, R.W., Basorre, B.L., Mulholland, R.J.: Ecological stability: an information theory viewpoint. J. Theor. Biol. 57, 355–371 (1976)

    Article  Google Scholar 

  27. SCOPE: Ecosystem ascendancy and nutrient dynamics. SCOPE Newslett. 93, 4–5 (1999)

    Google Scholar 

  28. Shannon, C.E.: A mathematical theory of communication. Bell Syst. Tech. J. 27, 379–423 (1948)

    Article  MathSciNet  MATH  Google Scholar 

  29. Simpson, E.H.: Measurement of diversity. Nature 163, 688 (1949)

    Google Scholar 

  30. Solé, R.V., Valverde, S.: Information theory of complex networks: On evolution and architectural constraints. Lect. Notes Phys. 650, 189–207 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  31. Tilman, D., Downing, J.A.: Biodiversity and stability in grasslands. Nature 367, 363–365 (1994)

    Google Scholar 

  32. Tribus, M., McIrvine, E.C.: Energy and information. Sci. Am. 225, 179–188 (1971)

    Google Scholar 

  33. Ulanowicz, R.E.: An hypothesis on the development of natural communities. J. Theor. Biol. 85, 223–245 (1980)

    Article  Google Scholar 

  34. Ulanowicz, R.E.: Ecology, the Ascendent Perspective. Columbia University Press, NY (1997)

    Google Scholar 

  35. Ulanowicz, R.E.: Life after Newton: An ecological metaphysic. BioSystems 50, 127–142 (1999)

    Article  Google Scholar 

  36. Ulanowicz, R.E.: Toward the measurement of ecological integrity. In: Pimentel, D., Westra, L., Noss, R.F. (eds), Ecological Integrity: Integrating Environment, Conservation and Health, pp. 99–113. Island Press, Washington, DC (2000)

    Google Scholar 

  37. Ulanowicz, R.E.: Quantifying constraints upon trophic and migratory transfers in spatially heterogeneous ecosystems. In: Sanderson, J., Harris, L.D. (eds.) Series in Landscape Ecology: A Top-Down Approach, pp. 113–142. Lewis Publications, Boca Raton, FL (2000)

    Google Scholar 

  38. Ulanowicz, R.E.: Information theory in ecology. Comput. Chem. 25, 393–399 (2001)

    Google Scholar 

  39. Ulanowicz, R.E.: The balance between adaptability and adaptation. BioSystems 64, 13–22 (2002)

    Article  Google Scholar 

  40. Ulanowicz, R.E., Abarca-Arenas, L.G.: An informational synthesis of ecosystem structure and function. Ecol. Model. 95, 1–10 (1997)

    Article  Google Scholar 

  41. Ulanowicz, R.E., Baird, D.: Nutrient controls on ecosystem dynamics: The Chesapeake mesohaline community. J. Mar. Sci. 19, 159–172 (1999)

    Google Scholar 

  42. Ulanowicz, R.E., Goerner, S.J., Lietaer, B., Gomez, R.: Quantifying sustainability: resilience, efficiency and the return of information theory. Ecol. Complex. 6, 27–36 (2009)

    Article  Google Scholar 

  43. Ulanowicz, R.E., Norden, J.: Symmetrical overhead in flow networks. Int. J. Syst. Sci. 21(2), 429–437 (1990)

    Article  MATH  Google Scholar 

  44. Van Voris, P., O’Neill, R.V., Emanuel, W.R., Shugart, H.H. Jr.: Functional complexity and ecosystem stability. Ecology 61, 1352–1360 (1980)

    Google Scholar 

  45. Weber, B.H., Depew, D.J., Dyke, C., Salthe, S.N., Schneider, E.D., Ulanowicz, R.E., Wicken, J.S.: Evolution in thermodynamic perspective. Biol. Phil. 4, 373–405 (1989)

    Google Scholar 

  46. Wigner, E.P.: Statistical properties of real symmetric matrices with many dimensions. In: Proceedings of the Fourth Canadian Mathematical Congress, Toronto 174 (1959)

    Google Scholar 

  47. Woodwell, G.M., Smith, H.H.: Diversity and Stability in Ecological Systems, p. 22. U.S. Brookhaven Symp. Biol., NY (1969)

    Google Scholar 

  48. Zorach, A.C., Ulanowicz, R.E.: Quantifying the complexity of flow networks: How many roles are there? Complexity 8(3), 68–76 (2003)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert E. Ulanowicz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Ulanowicz, R.E. (2011). The Central Role of Information Theory in Ecology. In: Dehmer, M., Emmert-Streib, F., Mehler, A. (eds) Towards an Information Theory of Complex Networks. Birkhäuser, Boston, MA. https://doi.org/10.1007/978-0-8176-4904-3_7

Download citation

Publish with us

Policies and ethics