Skip to main content

Markov Entropy Centrality: Chemical, Biological, Crime, and Legislative Networks

  • Chapter
  • First Online:

Abstract

In this chapter, we propose the study of multiple systems using node centrality or connectedness information measures derived from a Graph or Complex Network. The information is quantified in terms of the Entropy centrality kC θ(j) of the jth parts or states (nodes) of a Markov Chain associated with the system, represented by a network graph. The procedure is standard for all systems despite the complexity of the system. First, we define the phenomena to study, ranging from molecular systems composed by single molecules (drug activity, drug toxicity), multiple molecules (networks of chemical reactions), and macromolecules (DNA–drug interaction, protein function), to ecological systems (bacterial co-aggregation), or social systems (criminal causation, legislative productivity). Second, we collect several cases from literature (drugs, chemical reactions, proteins, bacterial species, or criminal cases). Next, we classify the cases in at least two different groups (active/nonactive drugs, enantioselective/non-enantioselective reactions, functional/nonfunctional proteins, co-aggregating/non-co-aggregating bacteria, or crime/noncrime cause, efficient/nonefficient law). After that, we represent the interconnectivity of the discrete parts of the system (atoms, amino acids, reactants, bacteria species, or people) as a graph or network. The Markov Chain theory is used to calculate the entropy of the system for nodes placed at different distances. Finally, we aim to both derive and validate a classification model using the entropy values as input variables and the classification of cases as the output variables. The model is used to predict the probability with which a case presents the studied property. The present work proposes the entropy of a Markov Chain associated with a network or graph to be used as a universal quantity in pattern recognition regardless the chemical, biological, social, or other nature of the systems under study.

MSC2000 Primary 57Q05; Secondary 37B40, 68R10, 65C40, 91D30.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Abhiman, S., Sonnhammer, E.L.: Large-scale prediction of function shift in protein families with a focus on enzymatic function. Proteins 60(4), 758–768 (2005)

    Article  Google Scholar 

  2. Agarwala, R., Batzoglou, S., Dancik, V., Decatur, S.E., Hannenhalli, S., Farach, M., Muthukrishnan, S., Skiena, S.: Local rules for protein folding on a triangular lattice and generalized hydrophobicity in the hp model. J. Comput. Biol.4(3), 275–296 (1997)

    Article  MATH  Google Scholar 

  3. Agëero-Chapin, G., González-Díaz, H., Molina, R., Varona-Santos, J., Uriarte, E., González-Díaz, Y.: Novel 2D maps and coupling numbers for protein sequences. The first QSAR study of polygalacturonases; isolation and prediction of a novel sequence from psidium guajava L. FEBS Lett.580, 723–730 (2006)

    Google Scholar 

  4. Agrawal, V.K., Banerji, M., Gupta, M., Singh, J., Khadikar, P.V., Supuran, C.T.: QSAR study on carbonic anhydrase inhibitors: water-soluble sulfonamides incorporating beta-alanyl moieties, possessing long lasting-intra ocular pressure lowering properties – a molecular connectivity approach. Eur. J. Med. Chem. 40(10), 1002–1012 (2005)

    Article  Google Scholar 

  5. Aguero-Chapin, G., González-Díaz, H., de la Riva, G., Rodriguez, E., Sanchez-Rodriguez, A., Podda, G., Vazquez-Padron, R.I.: MMM-QSAR recognition of ribonucleases without alignment: comparison with an HMM model and isolation from schizosaccharomyces pombe, prediction, and experimental assay of a new sequence. J. Chem. Inf. Model.48(2), 434–448 (2008)

    Article  Google Scholar 

  6. Albert, R., Barabsi, A.L.: Statistical mechanics of complex networks. Rev. Mod. Phys. 74(1), 4797 (2002)

    Article  MathSciNet  Google Scholar 

  7. Alejandro S.-F., Ernesto P.-R., Lorenzo S.: Protein homology detection and fold inference through multiple alignment entropy profiles (2008)

    Google Scholar 

  8. Anderson, P.G., Johansson, F., Tanner, D.: Enantioselective addition of organolithium reagents to imines mediated by C2-symmetric bis(aziridine) ligands. Tetrahedron54, 11549–11566 (1998)

    Article  Google Scholar 

  9. Antunes, A., Ramos, M.J.: Discovery of a large number of previously unrecognized mitochondrial pseudogenes in fish genomes. Genomics 86(6), 708–717 (2005)

    Article  Google Scholar 

  10. Ariëns, E.J., Soudijn, W., Timmermans, P.B.M.W.M.: Stereochemistry and Biological Activity of Drugs. Blackwell Scientific, Oxford (1983)

    Google Scholar 

  11. Ramos de Armas, R., González-Díaz, H., Molina, R., Uriarte, E.: Markovian backbone negentropies: Molecular descriptors for protein research. i. predicting protein stability in arc repressor mutants. Proteins56(4), 715–723 (2004)

    Article  Google Scholar 

  12. Arrasate, S., Lete, E., Sotomayor, N.: Synthesis of enantiomerically enriched amines by chiral ligand mediated addition of organolithium reagents to imines. Tetrahedron Asymmetry 12(14), 2077–2082 (2001)

    Article  Google Scholar 

  13. Arteca, G.A., Tapia, O.: Characterization of fold diversity among proteins with the same number of amino acid residues. J. Chem. Inf. Comput. Sci.39(4), 642–649 (1999)

    Article  Google Scholar 

  14. Balaban, A.T., Basak, S.C., Beteringhe, A., Mills, D., Supuran, C.T.: QSAR study using topological indices for inhibition of carbonic anhydrase ii by sulfanilamides and schiff bases. Mol. Divers 8(4), 401–412 (2004)

    Article  Google Scholar 

  15. Barabasi, A.L., Bonabeau, E.: Scale-free networks. Sci. Am.288(5), 60–69 (2003)

    Article  Google Scholar 

  16. Basketter, D., Scholes, E.: Comparison of the local lymph node assay with the guinea-pig maximization test for the detection of a range of contact allergens. Fd. Chem. Toxic. 30, 65–69 (1992)

    Article  Google Scholar 

  17. Batagelj, V., Mrvar, A.: Pajek 1.15 (2006)

    Google Scholar 

  18. Batista, J., Godden, J.W., Bajorath, J.: Assessment of molecular similrity from the analysis if randomly generated structural fragment populations. J. Chem. Inf. Model.46 (2006)

    Google Scholar 

  19. Berger, B., Leighton, T.: Protein folding in the hydrophobic-hydrophilic (hp) model is np-complete. J. Comput. Biol. 5(1), 27–40 (1998)

    Article  Google Scholar 

  20. Berman, H., Henrick, K., Nakamura, H.: Announcing the worldwide protein data bank. Nat. Struct. Biol.10(12), 980 (2003)

    Article  Google Scholar 

  21. Berrisford, D.J.: Catalytic asymmetric C–C bond formation: new enolato- and organolithium chemistry. Angew. Chem., Int. Ed. Engl. 34, 178–180 (1995)

    Article  Google Scholar 

  22. Bloch, R.: Additions of organometallic reagents to C = N bonds: reactivity and selectivity. Chem. Rev.98, 1404–1438 (1998)

    Article  Google Scholar 

  23. Bonchev, D.: Information Theoretic Indices for Characterization of Chemical Structures. Research Studies Press, Chichester (1983)

    Google Scholar 

  24. Bonchev, D.: Complexity in Chemistry, Biology, and Ecology. Springer, New York (2005)

    Book  MATH  Google Scholar 

  25. Bonchev, D., Buck, G.A.: From molecular to biological structure and back. J. Chem. Inf. Model. 47(3), 909–917 (2007)

    Article  Google Scholar 

  26. Bork, P., Jensen, L.J., von Mering, C., Ramani, A.K., Lee, I., Marcotte, E.M.: Protein interaction networks from yeast to human. Curr. Opin. Struct. Biol.14(3), 292–299 (2004)

    Article  Google Scholar 

  27. Bornholdt, S., Schuster, H.: Handbook of Graphs and Complex Networks: From the Genome to the Internet. Wiley-VCH GmbH & CO. KGa., Wheinheim (2003)

    MATH  Google Scholar 

  28. Breiger, R.: The analysis of social networks. In: Hardy, M., et al. (eds.) Handbook of Data Analysis, pp. 505–526. Sage Publications, London (2004)

    Google Scholar 

  29. Buswell, C.M., Herlihy, Y.M., Lawrence, L.M., McGuiggan, J.T., Marsh, P.D., Keevil, C.W., Leach, S.A.: Extended survival and persistence of campylobacter spp. in water and aquatic biofilms and their detection by immunofluorescent-antibody and -rRNA staining. Appl. Environ. Microbiol. 64(2), 733–741 (1998)

    Article  Google Scholar 

  30. Cabello, N., Kizirian, J.C., Alexakis, A.: Enantioselective addition of aryllithium reagents to aromatic imines mediated by 1,2-diamine ligands. Tetrahedron Lett.45, 4639–4642 (2004)

    Article  Google Scholar 

  31. Cabello, N., Kizirian, J.C., Gille, S., Alexakis, A., Bernardinelli, G., Pinchard, L., Caille, J.C.: Simple 1,2-diamine ligands for asymmetric addition of aryllithium reagents to imines. Eur. J. Org. Chem. 4835–4842 (2005)

    Google Scholar 

  32. Casanola-Martin, G.M., Marrero-Ponce, Y., Khan, M.T., Ather, A., Khan, K.M., Torrens, F., Rotondo, R.: Dragon method for finding novel tyrosinase inhibitors: Biosilico identification and experimental in vitro assays. Eur. J. Med. Chem. 42(11-12), 1370–1381 (2007)

    Article  Google Scholar 

  33. Castillo-Garit, J.A., Marrero-Ponce, Y., Torrens, F., Garcia-Domenech, R., Romero-Zaldivar, V.: Bond-based 3d-chiral linear indices: theory and qsar applications to central chirality codification. J. Comput. Chem.29(15), 2500–2512 (2008)

    Article  Google Scholar 

  34. Chen, M., Huang, W.Q.: A branch and bound algorithm for the protein folding problem in the hp lattice model. Genom. Proteomics Bioinformatics 3(4), 225–230 (2005)

    Article  Google Scholar 

  35. Cheng, Z., Ren, J., Li, Y., Chang, W., Chen, Z.: Study on the multiple mechanisms underlying the reaction between hydroxyl radical and phenolic compounds by qualitative structure and activity relationship. Bioorg. Med. Chem.10(12), 4067–4073 (2002)

    Article  Google Scholar 

  36. Chou, K.C., Wei, D.Q., Du, Q.S., Sirois, S., Zhong, W.Z.: Review: Progress in computational approach to drug development against sars. Curr. Med. Chem. 13, 3263–3270 (2006)

    Article  Google Scholar 

  37. Costerton, J.W., Geesey, G.G., Cheng, K.J.: How bacteria stick. Sci. Am.238(1), 86–95 (1978)

    Article  Google Scholar 

  38. Craig, C.: Social structure. Dictionary of the Social Sciences. Oxford University Press, Oxford (2002)

    Google Scholar 

  39. Critchlow, D., Shuying, L., Nourijelyani, K., Pearl, D.: Some statistical methods for phylogenetic trees with application to HIV disease. Math. Comput. Model. 32(1-2), 69–81 (2000)

    Article  MATH  Google Scholar 

  40. Cruz-Monteagudo, M., González-Díaz, H.: Unified drug-target interaction thermodynamic markov model using stochastic entropies to predict multiple drugs side effects. Eur. J. Med. Chem.40(10), 1030–1041 (2005)

    Article  Google Scholar 

  41. Cruz-Monteagudo, M., González-Díaz, H., Agero-Chapin, G., Santana, L., Borges, F., Domnguez, R.E., Podda, G., Uriarte, E.: Computational chemistry development of a unified free energy markov model for the distribution of 1300 chemicals to 38 different environmental or biological systems. J. Comput. Chem. 28, 1909–1922 (2007a)

    Article  Google Scholar 

  42. Cruz-Monteagudo, M., González-Díaz, H., Aguero-Chapin, G., Santana, L., Borges, F., Dominguez, E.R., Podda, G., Uriarte, E.: Computational chemistry development of a unified free energy markov model for the distribution of 1300 chemicals to 38 different environmental or biological systems. J. Comput. Chem.28(11), 1909–1923 (2007b)

    Article  Google Scholar 

  43. Cruz-Monteagudo, M., González-Díaz, H., Borges, F., Dominguez, E., Cordeiro, M.N.: 3D-mednes: An alternative “in silico” technique for chemical research in toxicology. 2. quantitative proteome-toxicity relationships (qptr) based on mass spectrum spiral entropy. Chem. Res. Toxicol. (21), 619–632 (2008a)

    Google Scholar 

  44. Cruz-Monteagudo, M., Munteanu, C., Borges, F., Cordeiro, M., Uriarte, E., Chou, K.C., González-Díaz, H.: Stochastic molecular descriptors for polymers. 4. study of complex mixtures with topological indices of mass spectra spiral and star networks: The blood proteome case. Polymer 49(25), 5575–5587 (2008c)

    Google Scholar 

  45. Cruz-Monteagudo, M., Munteanu, C.R., Borges, F., Cordeiro, M.N., Uriarte, E., González-Díaz, H.: Quantitative proteome-property relationships (qpprs). part 1: finding biomarkers of organic drugs with mean markov connectivity indices of spiral networks of blood mass spectra. Bioorg. Med. Chem.16(22), 9684–9693 (2008b)

    Google Scholar 

  46. Das, B., Meirovitch, H.: Solvation parameters for predicting the structure of surface loops in proteins: transferability and entropic effects. Proteins 51(3), 470–483 (2003)

    Article  Google Scholar 

  47. De, P., Singh, A.E., Wong, T., Yacoub, W., Jolly, A.M.: Sexual network analysis of a gonorrhoea outbreak. Sex. Transm. Infect.80(4), 280–285 (2004)

    Article  Google Scholar 

  48. Dea-Ayuela, M.A., Perez-Castillo, Y., Meneses-Marcel, A., Ubeira, F.M., Bolas-Fernandez, F., Chou, K.C., González-Díaz, H.: Hp-lattice qsar for dynein proteins: experimental proteomics (2d-electrophoresis, mass spectrometry) and theoretic study of a leishmania infantum sequence. Bioorg. Med. Chem. 16(16), 7770–7776 (2008)

    Article  Google Scholar 

  49. Dehmer, M.: A novel method for measuring the structural information content of networks. Cybern. Syst.39(8), 825–842 (2008)

    Article  MATH  Google Scholar 

  50. Dehmer, M.: Information-theoretic concepts for the analysis of complex networks. Appl. Artif. Intell. 22(7 & 8), 684–706 (2008)

    Article  Google Scholar 

  51. Denmark, S.E., Nakajima, N., Nicaise, O.J.C.: Asymmetric addition of organolithium reagents to imines. J. Am. Chem. Soc.116, 8797–8798 (1994)

    Article  Google Scholar 

  52. Denmark, S.E., Nicaise, O.J.C.: Ligand-mediated addition of organometallic reagents to azomethine functions. Chem. Commun. 999–1004 (1996)

    Google Scholar 

  53. Denmark, S.E., Nicaise, O.J.C.: In: Jacobsen, E.N., Pfaltz, A., Yamamoto, H. (eds.) Comprehensive Asymmetric Catalysis, vol. II, 921–961. Springer, Berlin (1999)

    Google Scholar 

  54. Denmark, S.E., Stiff, C.M.: Effect of ligand structure in the bisoxazoline mediated asymmetric addition of methyllithium to imines. J. Organic Chem. 65, 5875–5878 (2000)

    Article  Google Scholar 

  55. Devah, P.: The mark of a criminal record. Am. J. Soc.108, 937–975 (2003)

    Article  Google Scholar 

  56. Devillers, J., Balaban, A.T.: Topological Indices and Related Descriptors in QSAR and QSPR. Gordon and Breach, The Netherlands (1999)

    Google Scholar 

  57. Dobson, P.D., Cai, Y.D., Stapley, B.J., Doig, A.J.: Prediction of protein function in the absence of significant sequence similarity. Curr. Med. Chem. 11(16), 2135–2142 (2004)

    Article  Google Scholar 

  58. Eliel, E.L., Wilen, S.H., Mander, L.N.: Stereochemistry of Organic Compounds. Wiley, New York (1994)

    Google Scholar 

  59. Elvers, K.T., Leeming, K., Moore, C.P., Lappin-Scott, H.M.: Bacterial-fungal biofilms in flowing water photo-processing tanks. J. Appl. Microbiol.84(4), 607–618 (1998)

    Article  Google Scholar 

  60. Enders, D., Reinhold, U.: Asymmetric synthesis of amines by nucleophilic 1,2-addition of organometallic reagents to the CN-double bond. Tetrahedron Asymmetry 8, 1895–1946 (1997)

    Article  Google Scholar 

  61. Erhan, D., LH́eureux P.J., Yue, S.Y., Bengio, Y.: Collaborative filtering on a family of biological targets. J. Chem. Inf. Model.46(2), 626–635 (2006)

    Article  Google Scholar 

  62. Estrada, E.: Characterization of the folding degree of proteins. Bioinformatics 18, 697–704 (2002)

    Article  Google Scholar 

  63. Estrada, E.: Virtual identification of essential proteins within the protein interaction network of yeast. Proteomics6(1), 35–40 (2006)

    Google Scholar 

  64. Estrada, E.: Food webs robustness to biodiversity loss: the roles of connectance, expansibility and degree distribution. J. Theor. Biol. 244(2), 296–307 (2007)

    Article  MathSciNet  Google Scholar 

  65. Estrada, E., Molina, E.: 3D connectivity indices in QSPR/QSAR studies. J. Chem. Inf. Comput. Sci.41(3), 791–797 (2001)

    Article  Google Scholar 

  66. Estrada, E., Uriarte, E.: Recent advances on the role of topological indices in drug discovery research. Curr. Med. Chem. 8, 1573–1588 (2001)

    Article  Google Scholar 

  67. Estrada, E., Uriarte, E., Vilar, S.: Effect of protein backbone folding on the stability of protein-ligand complexes. J. Proteome. Res.5, 105–111 (2006)

    Article  Google Scholar 

  68. Evans, P.: Contact and respiratory allergy; a regulatory perspective. In: Seiler, J., Autrup, J., Autrup, H. (eds.) Diversification in Toxicology – Man and Environment, pp. 275–284. Springer, Berlin (1998)

    Chapter  Google Scholar 

  69. Ferino, G., González-Díaz, H., Delogu, G., Podda, G., Uriarte, E.: Using spectral moments of spiral networks based on PSA/MASS spectra outcomes to derive quantitative proteome-disease relationships (qpdrs) and predicting prostate cancer. Biochem. Biophys. Res. Commun. 372(2), 320–325 (2008)

    Article  Google Scholar 

  70. Forst, C.V.: Host-pathogen systems biology. DDT11(5-6), 220–227 (2006)

    Google Scholar 

  71. Fowler, J.H., Jeon, S.: The authority of supreme court precedent. Soc. Network 30, 16–30 (2008)

    Article  Google Scholar 

  72. Garcia-Domenech, R., Galvez, J., de Julian-Ortiz, J.V., Pogliani, L.: Some new trends in chemical graph theory. Chem. Rev.108(3), 1127–1169 (2008)

    Article  Google Scholar 

  73. Garcia-Garcia, A., Galvez, J., de Julian-Ortiz, J.V., Garcia-Domenech, R., Munoz, C., Guna, R., Borras, R.: Search of chemical scaffolds for novel antituberculosis agents. J. Biomol. Screen. 10(3), 206–214 (2005)

    Article  Google Scholar 

  74. Gates, M.A.: A simple way to look at DNA. J. Theor. Biol.119, 319–328 (1986)

    Article  Google Scholar 

  75. Gertz, J., Elfond, G., Shustrova, A., Weisinger, M., Pellegrini, M., Cokus, S., Rothschild, B.: Inferring protein interactions from phylogenetic distance matrices. Bioinformatics 19(16), 2039–2045 (2003)

    Article  Google Scholar 

  76. Gille, S., Cabello, N., Kizirian, J.C., Alexakis, A.: A new pseudo c2-symmetric tertiary diamine for the enantioselective addition of meli to aromatic imines. Tetrahedron Asymmetry17, 1045–1047 (2006)

    Article  Google Scholar 

  77. Goh, C.S., Cohen, F.E.: Co-evolutionary analysis reveals insights into protein–protein interactions. J. Mol. Biol. 324(1), 177–192 (2002)

    Article  Google Scholar 

  78. Gonzalez, M.P., Moldes del Carmen Teran, M.: A tops-mode approach to predict adenosine kinase inhibition. Bioorg. Med. Chem. Lett.14(12), 3077–3079 (2004c)

    Google Scholar 

  79. Gonzalez, M.P., del Carmen Teran Moldes, M.: A tops-mode approach to predict affinity for a1 adenosine receptors. 2-(arylamino)adenosine analogues. Bioorg. Med. Chem. 12(11), 2985–2993 (2004a)

    Google Scholar 

  80. Gonzalez, M.P., Diaz, H.G., Cabrera, M.A., Ruiz, R.M.: A novel approach to predict a toxicological property of aromatic compounds in the tetrahymena pyriformis. Bioorg. Med. Chem.12(4), 735–744 (2004b)

    Article  Google Scholar 

  81. González-Díaz, H., Agäero-Chapin, G., Varona, J., Molina, R., Delogu, G., Santana, L., Uriarte, E., Gianni, P.: 2D-RNA-coupling numbers: A new computational chemistry approach to link secondary structuretopology with biological function. J. Comput. Chem. 28, 1049–1056 (2007e)

    Article  Google Scholar 

  82. González-Díaz, H., Aguero-Chapin, G., Varona-Santos, J., Molina, R., de la Riva, G., Uriarte, E.: 2d rna-qsar: assigning acc oxidase family membership with stochastic molecular descriptors; isolation and prediction of a sequence from psidium guajava L. Bioorg. Med. Chem. Lett.15(11), 2932–2937 (2005a)

    Article  Google Scholar 

  83. González-Díaz, H., González-Díaz, Y., Santana, L., Ubeira, F.M., Uriarte, E.: Proteomics, networks and connectivity indices. Proteomics 8, 750–778 (2008a)

    Article  Google Scholar 

  84. González-Díaz, H., Marrero, Y., Hernandez, I., Bastida, I., Tenorio, E., Nasco, O., Uriarte, E., Castanedo, N., Cabrera, M.A., Aguila, E., Marrero, O., Morales, A., Perez, M.: 3D-mednes: an alternative “in silico” technique for chemical research in toxicology. 1. prediction of chemically induced agranulocytosis. Chem. Res. Toxicol.16(10), 1318–1327 (2003)

    Article  Google Scholar 

  85. González-Díaz, H., Molina, R., Uriarte, E.: Markov entropy backbone electrostatic descriptors for predicting proteins biological activity. Bioorg. Med. Chem. Lett. 14(18), 4691–4695 (2004)

    Article  Google Scholar 

  86. González-Díaz, H., Molina, R., Uriarte, E.: Stochastic molecular descriptors for polymers 1. modeling the properties of icosahedral viruses with 3d-markovian negentropies. Polymer45(11), 3845–3853 (2004)

    Google Scholar 

  87. González-Díaz, H., Molina, R., Uriarte, E.: Recognition of stable protein mutants with 3d stochastic average electrostatic potentials. FEBS Lett. 579(20), 4297–4301 (2005)

    Article  Google Scholar 

  88. González-Díaz, H., Molina, R., Uriarte, E.: Recognition of stable protein mutants with 3d stochastic average electrostatic potentials. FEBS Lett.579(20), 4297–4301 (2005b)

    Article  Google Scholar 

  89. González-Díaz, H., Molina-Ruiz, R., Hernandez, I.: March-inside v3.0 (markov chains invariants for simulation & design); windows supported version under request to the main author contact email: gonzalezdiazh@yahoo.es (2007c)

    Google Scholar 

  90. González-Díaz, H., Pérez-Bello, A., Cruz-Monteagudo, M., González-Díaz, Y., Santana, L., Uriarte, E.: Chemometrics for qsar with low sequence homology: Mycobacterial promoter sequences recognition with 2d-rna entropies. Chemom. Intell. Lab. Systs. 85, 20–26 (2007b)

    Article  Google Scholar 

  91. González-Díaz, H., Perez-Castillo, Y., Podda, G., Uriarte, E.: Computational chemistry comparison of stable/nonstable protein mutants classification models based on 3d and topological indices. J. Comput. Chem.28(12), 1990–1995 (2007c)

    Article  Google Scholar 

  92. González-Díaz, H., Prado-Prado, F.: Unified qsar and network-based computational chemistry approach to antimicrobials, part 1: Multispecies activity models for antifungals. J. Comput. Chem. 29, 656–657 (2008)

    Article  Google Scholar 

  93. González-Díaz, H., Prado-Prado, F., Ubeira, F.M.: Predicting antimicrobial drugs and targets with the march-inside approach. Curr. Top. Med. Chem.8(18), 1676–1690 (2008)

    Article  Google Scholar 

  94. González-Díaz, H., Prado-Prado, F.J., Santana, L., Uriarte, E.: Unify qsar approach to antimicrobials. part 1: Predicting antifungal activity against different species. Bioorg. Med. Chem. 14, 5973–5980 (2006a)

    Google Scholar 

  95. González-Díaz, H., Saiz-Urra, L., Molina, R., Santana, L., Uriarte, E.: A model for the recognition of protein kinases based on the entropy of 3d van der waals interactions. J. Proteome. Res.6(2), 904–908 (2007d)

    Article  Google Scholar 

  96. González-Díaz, H., Saiz-Urra, L., Molina, R., Santana, L., Uriarte, E.: A model for the recognition of protein kinases based on the entropy of 3d van der waals interactions. J. Proteome. Res. 6(2), 904–908 (2007e)

    Article  Google Scholar 

  97. González-Díaz, H., Saíz-Urra, L., Molina, R., Uriarte, E.: Stochastic molecular descriptors for polymers. 2. spherical truncation of electrostatic interactions on entropy based polymers 3d-qsar. Polymer46, 2791–2798 (2005b)

    Google Scholar 

  98. González-Díaz, H., Sanchez-Gonzalez, A., González-Díaz, Y.: 3d-qsar study for DNA cleavage proteins with a potential anti-tumor atcun-like motif. J. Inorg. Biochem. 100(7), 1290–1297 (2006)

    Article  Google Scholar 

  99. González-Díaz, H., Uriarte, E.: Biopolymer stochastic moments. i. modeling human rhinovirus cellular recognition with protein surface electrostatic moments. Biopolymers77(5), 296–303 (2005a)

    Google Scholar 

  100. González-Díaz, H., Uriarte, E.: Proteins qsar with markov average electrostatic potentials. Bioorg. Med. Chem. Lett 15(22), 5088–5094 (2005b)

    Article  Google Scholar 

  101. González-Díaz, H., Uriarte, E., Ramos de Armas, R.: Predicting stability of arc repressor mutants with protein stochastic moments. Bioorg. Med. Chem.13(2), 323–331 (2005c)

    Google Scholar 

  102. González-Díaz, H., Vilar, S., Santana, L., Uriarte, E.: Medicinal chemistry and bioinformatics current trends in drugs discovery with networks topological indices. Curr. Top. Med. Chem. 7(10), 1025–1039 (2007a)

    Article  Google Scholar 

  103. González-Díaz, H., Vina, D., Santana, L., de Clercq, E., Uriarte, E.: Stochastic entropy qsar for the in silico discovery of anticancer compounds: prediction, synthesis, and in vitro assay of new purine carbanucleosides. Bioorg. Med. Chem.14(4), 1095–1107 (2006b)

    Article  Google Scholar 

  104. Graham, D.J.: Information content and organic molecules: Aggregation states and solvent effects. J. Chem. Inf. Model. 45(1223) (2005)

    Google Scholar 

  105. Graham, D.J.: Information content in organic molecules: Brownian processing at low levels. J. Chem. Inf. Model.47(2), 376–389 (2007)

    Article  Google Scholar 

  106. Graham, D.J., Kim, M.: Information and classical thermodynamic transformations. J. Phys. Chem. B 112, 10585–10593 (2008)

    Article  Google Scholar 

  107. Gupta, A., Manuch, J., Stacho, L.: Inverse protein folding in 2d hp mode (extended abstract). Proc IEEE Comput. Syst. Bioinform. Conf. 311–318 (2004)

    Google Scholar 

  108. Gupta, A., Manuch, J., Stacho, L.: Structure-approximating inverse protein folding problem in the 2d hp model. J. Comput. Biol.12(10), 1328–1345 (2005)

    Article  Google Scholar 

  109. Hamacher, K.: Information theoretical measures to analyze trajectories in rational molecular design. J. Comput. Chem. 28(16), 2576–2580 (2007)

    Article  Google Scholar 

  110. Hampl, V., Cepicka, I., Flegr, J., Tachezy, J., Kulda, J.: Critical analysis of the topology and rooting of the parabasalian 16s rRNA tree. Mol. Phylogenet. Evol.32(3), 711–723 (2004)

    Article  Google Scholar 

  111. Han, L., Cui, J., Lin, H., Ji, Z., Cao, Z., Li, Y., Chen, Y.: Recent progresses in the application of machine learning approach for predicting protein functional class independent of sequence similarity. Proteomics 6, 4023–4037 (2006)

    Article  Google Scholar 

  112. Harford, C., Sarkar, B.: Neuromedin C binds Cu(II) and Ni(II) via the atcun motif: implications for the CNS and cancer growth. Biochem. Biophys. Res. Commun.209(3), 877–882 (1995)

    Article  Google Scholar 

  113. Harvey, P., Pagel, M.: The Comparative Method in Evolutionary Biology, Ecology and Evolution, vol. 1. Oxford University Press, Oxford (1991)

    Google Scholar 

  114. Hasegawa, M., Taniyama, D., Tomioka, K.: Facile asymmetric synthesis of a-amino acids employing chiral ligand-mediated asymmetric addition reactions of phenyllithium with imines. Tetrahedron 56, 10153–10158 (2000)

    Article  Google Scholar 

  115. Hjelle, B., Jenison, S., Torrez-Martinez, N., Yamada, T., Nolte, K., Zumwalt, R., MacInnes, K., Myers, G.: A novel hantavirus associated with an outbreak of fatal respiratory disease in the southwestern united states: evolutionary relationships to known hantaviruses. J. Virol.68(2), 592–596 (1994)

    Article  Google Scholar 

  116. Hua, S., Sun, Z.: Support vector machine approach for protein subcellular localization prediction. Bioinformatics 17(8), 721–728 (2001)

    Article  Google Scholar 

  117. Inc, H.: Hyperchem release 7.0.3 (2002)

    Google Scholar 

  118. Inoue, I., Shindo, M., Koga, K., Kanai, M., Tomioka, K.: Enantioselective reaction of an imine with methyllithium catalyzed by a chiral ligand. Tetrahedron Asymmetry6, 2527–2533 (1995)

    Article  Google Scholar 

  119. Inoue, I., Shindo, M., Koga, K., Tomioka, K.: Asymmetric 1,2-addition of organolithium to aldimines catalyzed by chiral ligand. Tetrahedron 50, 4429–4438 (1994)

    Article  Google Scholar 

  120. Jacques, J., Collet, A., Wilen, S.H.: Enantiomers, Racemates, and Resolution. Wiley, New York (1981)

    Google Scholar 

  121. Jefferson, K.K.: What drives bacteria to produce a biofilm? FEMS Microbiol. Lett.236(2), 163–173 (2004)

    Article  Google Scholar 

  122. Jensen, S.T., Shen, L., Liu, J.S.: Combining phylogenetic motif discovery and motif clustering to predict co-regulated genes. Bioinformatics 2120), 3832–3839 (2005)

    Article  Google Scholar 

  123. Jeong, H., Tombor, B., Albert, R., Oltvai, Z.N., Barabasi, A.L.: The large-scale organization of metabolic networks. Nature407(6804), 651–654 (2000)

    Article  Google Scholar 

  124. Jiang, M., Zhu, B.: Protein folding on the hexagonal lattice in the hp model. J. Bioinform. Comput. Biol. 3(1), 19–34 (2005)

    Article  Google Scholar 

  125. Johnson, J.C., Orbach, M.K.: Perceiving the political landscape: ego biases in cognitive political networks. Soc. Network24, 291–310 (2002)

    Article  Google Scholar 

  126. Junker, B.H., Koschuetzki, D., Schreiber, F.: Exploration of biological network centralities with centibin. BMC Bioinformatics 7(1), 219 (2006)

    Article  Google Scholar 

  127. Karelson, M.: Molecular Descriptors in QSAR/QSPR. Wiley-Interscience, New York (2000)

    Google Scholar 

  128. Karplus, M., McCammon, J.A.: Molecular dynamics simulations of biomolecules. Nat. Struct. Biol.9(9), 646–652 (2002)

    Article  Google Scholar 

  129. Kier, L.B.: Use of molecular negentropy to encode structure governing biological activity. J. Pharm. Sci. 69(7), 807–810 (1980)

    Article  Google Scholar 

  130. Kimber, I., Hilton, J., Botham, P.: Identification of contact allergens using the murine local lymph node assay. comparisons with the buehler occluded patch test in guinea pigs. J. Appl. Toxicol.10, 173–180 (1990)

    Article  Google Scholar 

  131. Kimoto, E., Tanaka, H., Gyotoku, J., Morishige, F., Pauling, L.: Enhancement of antitumor activity of ascorbate against ehrlich ascites tumor cells by the copper:glycylglycylhistidine complex. Cancer Res. 43(2), 824–828 (1983)

    Google Scholar 

  132. Kizirian, J.C., Cabello, N., Pinchard, L., Caille, J.C., Alexakis, A.: Enantioselective addition of methyllithium to aromatic imines catalyzed by c2 symmetric tertiary diamines. Tetrahedron61, 8939–8946 (2005)

    Article  Google Scholar 

  133. Klein, J.: The chemistry. In: Patai, S. (ed.) The Chemistry of Double-bonded Functional Groups: Suppement A, vol. 2. Wiley, Chichester (1989)

    Google Scholar 

  134. Kleinman, E.F., Volkmann, R.A.: In: Heathcock, C.H. (ed.) Comprehensive Organic Synthesis, Additions to C-X p-Bonds, Part 2, vol. 2. Pergamon Press, Oxford (1991)

    Google Scholar 

  135. Klovdahl, A.S., Potterat, J.J., Woodhouse, D.E., Muth, J.B., Muth, S.Q., Darrow, W.W.: Social networks and infectious disease: The colorado springs study. Soc. Sci. Med. 38, 79–88 (1994)

    Article  Google Scholar 

  136. Kolenbrander, P., Andersen, R., Clemans, D., Whittaker, C., Klier, C.: Potential role of functionally similar coaggregation mediators in bacterial succession. In: Newman, H., et al. (eds.) Dental Plaque Revisited: Oral Biofilms in Health and Disease, pp. 171–186. Bioline Press, Cardiff (1999)

    Google Scholar 

  137. Koschtzki, D.: Centibin, Centralities in Biological Networks. IPK Gatersleben, Germany (2004)

    Google Scholar 

  138. Kowalski, R.B., Wold, S.: Pattern recognition in chemistry. In: Krishnaiah, R.P., et al. (eds.) Handbook of Statistic, pp. 673–697. North Holland Publishing, Amsterdam (1982)

    Google Scholar 

  139. Kutner, M., Nachtsheim, C., Neter, J., Li, W.: Standardized multiple regression model. In: Applied Linear Statistical Models, 5th edn., pp. 271–277. McGraw Hill, New York (2005)

    Google Scholar 

  140. Lazareva-Ulitsky, B., Diemer, K., Thomas, P.D.: On the quality of tree-based protein classification. Bioinformatics21(9), 1876–1890 (2005)

    Article  Google Scholar 

  141. Leong, P.M., Morgenthaler, S.: Random walk and gap plots of dna sequences. Comput. Appl. Biosci. 11, 503–507 (1995)

    Google Scholar 

  142. Liao, B., Luo, J., Li, R., Zhu, W.: RNA secondary structure 2d graphical representation without degeneracy. Int. J. Quant. Chem.106(8), 1749–1755 (2006)

    Article  MATH  Google Scholar 

  143. Liljeros, F., Edling, C.R., Amaral, L.A.N., Stanley, H.E., Aberg, Y.: The webof human sexual contacts. Nature 411, 907–908 (2001)

    Google Scholar 

  144. Lorand, T., Kocsis, B., Sohar, P., Nagy, G., Jozsef, P., Kispal, G., Laszlo, R., Prokai, L.: Synthesis and antibacterial activity of fused mannich ketones. Eur. J. Med. Chem.37(10), 803–812 (2002)

    Article  Google Scholar 

  145. Mace, R., Holden, C.J.: A phylogenetic approach to cultural evolution. Trends Ecol. Evol. 20(3), 116–121 (2005)

    Article  Google Scholar 

  146. Marques, A.T., Antunes, A., Fernandes, P.A., Ramos, M.J.: Comparative evolutionary genomics of the hadh2 gene encoding abeta-binding alcohol dehydrogenase/17beta-hydroxysteroid dehydrogenase type 10 (abad/hsd10). BMC Genom.7, 202 (2006)

    Article  Google Scholar 

  147. Marrero-Ponce, Y., Medina-Marrero, R., Castillo-Garit, J.A., Romero-Zaldivar, V., Torrens, F., Castro, E.A.: Protein linear indices of the ’macromolecular pseudograph alpha-carbon atom adjacency matrix’ in bioinformatics. part 1: prediction of protein stability effects of a complete set of alanine substitutions in arc repressor. Bioorg. Med. Chem. 13(8), 3003–3015 (2005)

    Article  Google Scholar 

  148. Marrero-Ponce, Y., Nodarse, D., González-Díaz, H., Ramos de Armas, R., Romero-Zaldivar, V., Torrens, F., Castro, E.A.: Nucleic acid quadratic indices of the “macromolecular graphs nucleotides adjacency matrix”. modeling of footprints after the interaction of paromomycin with the hiv-1?-RNA packaging region. Int. J. Mol. Sci.5, 276–293 (2004)

    Article  Google Scholar 

  149. Maslovat, D., Chus, R., Lee, T.D., Franks, I.M.: Contextual interference: single task versus multi-task learning. Mot. Contr. 8(2), 213–233 (2004)

    Article  Google Scholar 

  150. Mason, O., Verwoerd, M.: Graph theory and networks in biology. IET Syst. Biol.1(2), 89–119 (2007)

    Article  Google Scholar 

  151. McCammon, J.A., Gelin, B.R., Karplus, M.: Dynamics of folded proteins. Nature 267(5612), 585–590 (1977)

    Google Scholar 

  152. McCammon, J.A., Karplus, M.: Internal motions of antibody molecules. Nature268(5622), 765–766 (1977)

    Article  Google Scholar 

  153. Microsoft.Corp.: Microsoft excel (2002)

    Google Scholar 

  154. Milla, M.E., Brown, B.M., Sauer, R.T.: Protein stability effects of a complete set of alanine substitutions in arc repressor. Nat. Struct. Biol. 1(8), 518–523 (1994)

    Article  Google Scholar 

  155. Mizruchi, M.S.: The American Corporate Network, 1904–1974. Sage, Beverly Hills (1982)

    Google Scholar 

  156. Molina, E., Diaz, H.G., Gonzalez, M.P., Rodriguez, E., Uriarte, E.: Designing antibacterial compounds through a topological substructural approach. J. Chem. Inf. Comput. Sci.44(2), 515–521 (2004)

    Article  Google Scholar 

  157. Moreno, J.L.: Who Shall Survive? Beacon House, New York (1934)

    Google Scholar 

  158. Moser, H., Rihs, G., Santer, H.Z.: Naturforsch 37B, 451–462 (1982)

    Article  Google Scholar 

  159. Mukhopadhyay, A., Peterson, R.T.: Fishing for new antimicrobials. Curr. Opin. Chem. Biol.10(4), 327–333 (2006)

    Article  Google Scholar 

  160. Munteanu, C.R., González-Díaz, H., Magalhaes, A.L.: Enzymes/non-enzymes classification model complexity based on composition, sequence, 3d and topological indices. J. Theor. Biol. 254(2), 476–482 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  161. Munteanu, C.R., Gonzles-Diz, H.: S2snet - sequence to star network, reg. no. 03/2008/1338 (2008)

    Google Scholar 

  162. Nalewajski, R.F.: Information Theory of Molecular Systems. Elsevier, Amsterdam (2006)

    Google Scholar 

  163. Nandy, A.: Two-dimensional graphical representation of dna sequences and intron-exon discrimination in intron-rich sequences. Comput. Appl. Biosci.12(1), 55–62 (1996)

    Google Scholar 

  164. Newman, M.: The structure and function of complex networks. SIAM Rev. 56, 167–256 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  165. North, M.: Contemp. Org. Synth.3, 323–343 (1996)

    Article  Google Scholar 

  166. Padgett, J.F., Ansell, C.K.J.F.: Robust action and the rise of the medici, 1400–1434. Am. J. Sociol. 98, 259–1319 (1993)

    Article  Google Scholar 

  167. Patlewicz, G.Y., Basketter, D.A., Pease, C.K., Wilson, K., Wright, Z.M., Roberts, D.W., Bernard, G., Arnau, E.G., Lepoittevin, J.P.: Further evaluation of quantitative structure–activity relationship models for the prediction of the skin sensitization potency of selected fragrance allergens. Contact Dermatitis50(2), 91–97 (2004)

    Article  Google Scholar 

  168. Perez-Bello, A., Munteanu, C.R., Ubeira, F.M., Lopes De Magalhaes, A., Uriarte, E., González-Díaz, H.: Alignment-free prediction of mycobacterial dna promoters based on pseudo-folding lattice network or star-graph topological indices. J. Theor. Biol. (2008)

    Google Scholar 

  169. Perez Gonzalez, M., González-Díaz, H., Molina Ruiz, R., Cabrera, M.A., Ramos de Armas, R.: Tops-mode based qsars derived from heterogeneous series of compounds. applications to the design of new herbicides. J. Chem. Inf. Comput. Sci. 43(4), 1192–1199 (2003)

    Google Scholar 

  170. Perron, Q., Alexakis, A.: Synthesis and application of a new pseudo c2-symmetric tertiary diamine for the enantioselective addition of meli to aromatic imines. Tetrahedron Asymmetry18, 2503–2506 (2007)

    Article  Google Scholar 

  171. Pompe, M., Veber, M., Randic, M., Balaban, A.T.: Using variable and fixed topological indices for the prediction of reaction rate constants of volatile unsaturated hydrocarbons with oh radicals. Molecules 9, 1160–1176 (2004)

    Article  Google Scholar 

  172. Prado-Prado, F., González-Díaz, H., Santana, L., Uriarte, E.: Unified qsar approach to antimicrobials. part 2: Predicting activity against more than 90 different species in order to halt antibacterial resistance. Bioorg. Med. Chem.15, 897–902 (2007)

    Article  Google Scholar 

  173. Prado-Prado, F., González-Díaz, H., Martinez de la Vega, O., Ubeira, F.M., Chou, K.C.: Unified qsar approach to antimicrobials. part 3: First multi-tasking qsar model for input-coded prediction, structural back-projection, and complex networks clustering of antiprotozoal compounds. Bioorg. Med. Chem. 16, 5871–5880 (2008)

    Article  Google Scholar 

  174. Prado-Prado, F.J., de la Vega, O.M., Uriarte, E., Ubeira, F.M., Chou, K.C., González-Díaz, H.: Unified qsar approach to antimicrobials. 4. multi-target qsar modeling and comparative multi-distance study of the giant components of antiviral drug-drug complex networks. Bioorg. Med. Chem.17, 56975 (2009)

    Article  Google Scholar 

  175. Puslednik, L., Serb, J.M.: Molecular phylogenetics of the pectinidae (mollusca: Bivalvia) and effect of increased taxon sampling and outgroup selection on tree topology. Mol. Phylogenet. Evol. 48(3), 1178–1188 (2008)

    Article  Google Scholar 

  176. Ramani, A.K., Marcotte, E.M.: Exploiting the co-evolution of interacting proteins to discover interaction specificity. J. Mol. Biol.327(1), 273–284 (2003)

    Article  Google Scholar 

  177. Randic, M., Balaban, A.T.: On a four-dimensional representation of dna primary sequences. J. Chem. Inf. Comput. Sci. 43(2), 532–539 (2003)

    Article  Google Scholar 

  178. Randic, M., Guo, X., Basak, S.C.: On the characterization of dna primary sequences by triplet of nucleic acid bases. J. Chem. Inf. Comput. Sci.41(3), 619–626 (2001)

    Article  Google Scholar 

  179. Ren, Y., Liu, H., Yao, X., Liu, M.: Prediction of ozone tropospheric degradation rate constants by projection pursuit regression. Anal. Chim. Acta 589, 150–158 (2007)

    Article  Google Scholar 

  180. Rickard, A.H., Gilbert, P., High, N.J., Kolenbrander, P.E., Handley, P.S.: Bacterial coaggregation: an integral process in the development of multi-species biofilms. Trends Microbiol.11(2), 94–100 (2003a)

    Article  Google Scholar 

  181. Rickard, A.H., McBain, A.J., Ledder, R.G., Handley, P.S., Gilbert, P.: Coaggregation between freshwater bacteria within biofilm and planktonic communities. FEMS Microbiol. Lett. 220(1), 133–140 (2003b)

    Article  Google Scholar 

  182. Risch, N., Arend, M.: In: Helmchen, G., Hoffmann, R.W., Mulzer, J., Schaumann, E. (eds.) Methods of Organic Chemistry. Stereoselective Synthesis [Houben-Weyl], Workbench Edition E21, Vol. 3. Thieme, Stuttgart (1996)

    Google Scholar 

  183. Rodloff, A.C., Leclercq, R., Debbia, E.A., Canton, R., Oppenheim, B.A., Dowzicky, M.J.: Comparative analysis of antimicrobial susceptibility among organisms from france, germany, italy, spain and the uk as part of the tigecycline evaluation and surveillance trial. Clin. Microbiol. Infect.14(4), 307–314 (2008)

    Article  Google Scholar 

  184. Sabidussi, G.: The centrality index of a graph. Psychometrika 31, 581–603 (1966)

    Article  MathSciNet  MATH  Google Scholar 

  185. Saiz-Urra, L., González-Díaz, H., Uriarte, E.: Proteins markovian 3d-qsar with spherically-truncated average electrostatic potentials. Bioorg. Med. Chem.13(11), 3641–3647 (2005)

    Article  Google Scholar 

  186. Sankararamakrishnan, R., Verma, S., Kumar, S.: Atcun-like metal-binding motifs in proteins: identification and characterization by crystal structure and sequence analysis. Proteins 58(1), 211–221 (2005)

    Article  Google Scholar 

  187. Santana, L., Uriarte, E., González-Díaz, H., Zagotto, G., Soto-Otero, R., Mendez-Alvarez, E.: A qsar model for in silico screening of mao-a inhibitors. prediction, synthesis, and biological assay of novel coumarins. J. Med. Chem.49(3), 1149–1156 (2006)

    Article  Google Scholar 

  188. Savoia, D.: Progress in the asymmetric synthesis of 1,2-diamines from azomethine compounds. Top. Organomet. Chem. 15, 1–58 (2005)

    Article  Google Scholar 

  189. Sciretti, D., Bruscolini, P., Pelizzola, A., Pretti, M., Jaramillo, A.: Computational protein design with side-chain conformational entropy. Proteins74(1), 176–191 (2008)

    Google Scholar 

  190. Seyden-Penne, J.: Chiral Auxiliaries and Ligands in Asymmetric Synthesis. Wiley, New York (1995)

    Google Scholar 

  191. SRL, T.: Dragon for windows ver. 5.3, software for molecular descriptor calculations, http://www.talete.mi.it (2005)

  192. Stahura, F.L., Godden, J.W., Xue, L., Bajorath, J.: Distinguishing between natural products and synthetic molecules by descriptor shannon entropy analysis and binary qsar calculations. J. Chem. Inf. Comput. Sci. 40(5), 1245–1252 (2000)

    Article  Google Scholar 

  193. StatSoft.Inc.: Statistica, Data Analysis Software System, version 6.0 (2002)

    Google Scholar 

  194. Stewart, J., Gill, L.: Econometrics, 2nd edn. Prentice Hall, London (1998)

    Google Scholar 

  195. Strogatz, S.H.: Exploring complex networks. Nature410(6825), 268–276 (2001)

    Article  MATH  Google Scholar 

  196. Taniyama, D., Hasegawa, M., Tomioka, K.: A facile asymmetric synthesis of 1-substituted tetrahydroisoquinoline based on a chiral ligand-mediated addition of organolithium to imine. Tetrahedron Asymmetry 10, 221–223 (1999)

    Article  Google Scholar 

  197. Thachuk, C., Shmygelska, A., Hoos, H.H.: A replica exchange monte carlo algorithm for protein folding in the hp model. BMC Bioinform.8(1), 342 (2007)

    Article  Google Scholar 

  198. Tippery, N.P., Les, D.H.: Phylogenetic analysis of the internal transcribed spacer (its) region in menyanthaceae using predicted secondary structure. Mol. Phylogenet. Evol. (2008)

    Book  Google Scholar 

  199. Todeschini, R., Consonni, V.: Handbook of Molecular Descriptors. Wiley-VCH, New York (2002)

    Google Scholar 

  200. Van de Waterbeemd, H.: Discriminant analysis for activity prediction. In: Manhnhold, R., Krogsgaard-Larsen, L., Timmerman, H. (eds.) Methods and Principles in Medicinal Chemistry, Chemometric methods in molecular design, Van Waterbeemd, H. (ed.), vol. 2, 265–288. VCH, Weinhiem (1995a)

    Google Scholar 

  201. Van Waterbeemd, H.: Discriminant analysis for activity prediction. In: Van Waterbeemd, H. (ed.) Chemometric methods in molecular design, Method and Principles in Medicinal Chemistry, vol. 2, pp. 265–282. Wiley-VCH, New York (1995b)

    Google Scholar 

  202. Van Waterbeemd, H.: Chemometric methods in molecular design,Method and Principles in Medicinal Chemistry, vol. 2. Wiley-VCH, New York (1995c)

    Book  Google Scholar 

  203. Vassura, M., Margara, L., Di Lena, P., Medri, F., Fariselli, P., Casadio, R.: Reconstruction of 3d structures from protein contact maps. IEEE/ACM Trans. Comput. Biol. Bioinform. 5(3), 357–367 (2008)

    Article  Google Scholar 

  204. Vilar, S., González-Díaz, H., Santana, L., Uriarte, E.: Qsar model for alignment-free prediction of human breast cancer biomarkers based on electrostatic potentials of protein pseudofolding hp-lattice networks. J. Comput. Chem.29, 2613–2622 (2008)

    Article  Google Scholar 

  205. Volkmann, R.A.: In: S.L. Schreiber (ed.) Comprehensive Organic Synthesis, Additions to C-X p-Bonds, Part 1, vol. 1. Pergamon Press, Oxford (1991)

    Google Scholar 

  206. Volokhov, D.V., Neverov, A.A., George, J., Kong, H., Liu, S.X., Anderson, C., Davidson, M.K., Chizhikov, V.: Genetic analysis of housekeeping genes of members of the genus acholeplasma: phylogeny and complementary molecular markers to the 16s rRNA gene. Mol. Phylogenet. Evol. 44(2), 699–710 (2007)

    Article  Google Scholar 

  207. Weka: Waikato Environment for Knowledge Analysis (weka) (2002)

    Google Scholar 

  208. Wellman, B., Berkowitz, S.D.: Social Structures: A Network Approach. Cambridge University Press, Cambridge (1988)

    Google Scholar 

  209. White Harrison, S.B., Breiger, R.: Social structure from multiple networks: I blockmodels of roles and positions. Am. J. Sociol.81, 730–780 (1976)

    Article  Google Scholar 

  210. Wiener, H.: J. Am. Chem. Soc. 69, 17 (1947)

    Article  Google Scholar 

  211. Witten, I., Frank, E.: Data Mining: Practical Machine Learning Tools and Techniques with Java Implementations. San Francisco (2000)

    Google Scholar 

  212. Yamanishi, Y., Araki, M., Gutteridge, A., Honda, W., Kanehisa, M.: Prediction of drug-target interaction networks from the integration of chemical and genomic spaces. Bioinformatics24(13), i232–i240 (2008)

    Google Scholar 

  213. Yildirim, M.A., Goh, K.I., Cusick, M.E., Barabasi, A.L., Vidal, M.: Drug-target network. Nat. Biotechnol. 25(10), 1119–1126 (2007)

    Google Scholar 

  214. Zhang, X.S., Wang, Y., Zhan, Z.W., Wu, L.Y., Chen, L.: Exploring protein’s optimal hp configurations by self-organizing mapping. J. Bioinform. Comput. Biol.3(2), 385–400 (2005)

    Article  Google Scholar 

  215. Zhou, H., Zhou, Y.: Stability scale and atomic solvation parameters extracted from 1023 mutation experiments. Proteins 49(4), 483–492 (2002)

    Article  Google Scholar 

  216. Zweig, M.H.: Apolipoproteins and lipids in coronary artery disease. analysis of diagnostic accuracy using receiver operating characteristic plots and areas. Arch. Pathol. Lab. Med.118(2), 141–144 (1994)

    Google Scholar 

Download references

Acknowledgements

C.R. Munteanu and H. González-Díaz acknowledge financial support of Program Isidro Parga Pondal of the funded by Dirección Xeral de Investigación e Desenvolvemento, Xunta de Galicia. S. Arrasate acknowledges sponsorships for a tenure-track research position at the University of Santiago de Compostela from the “Ikertzaileak Hobetzeko eta Mugitzeko/Perfeccionamiento y Movilidad del Personal Investigador” Program of the “Hezkuntza, Unibertsitate eta Ikerketa Saila/Departamento de Educación, Universidades e Investigación, Eusko Jaurlaritza/Gobierno Vasco.” Financial support from Gobierno Vasco (GIC07/92-IT-227-07) is also gratefully acknowledged. A. Duardo-Sánchez gratefully acknowledges Prof. Begoña Villaverde, Ph.D. and Prof. A. López-Díaz for financial support (project 2006/PX 207) of Department of Especial Public Law, Financial and Tributary Law Area, Faculty of Law from University of Santiago de Compostela (Spain), which was funded by Xunta de Galicia. This work is supported by the “Ibero-American Network of the Nano-Bio-Info-Cogno Convergent Technologies,” Ibero-NBIC Network (209RT0366) funded by CYTED (Ciencia y Tecnologa para el Desarrollo) and by the COMBIOMED Network, the grant (Ref. PIO52048 and RD07/0067/0005), funded by the Carlos III Health Institute.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to C. R. Munteanu or H. González-Díaz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Munteanu, C.R. et al. (2011). Markov Entropy Centrality: Chemical, Biological, Crime, and Legislative Networks. In: Dehmer, M., Emmert-Streib, F., Mehler, A. (eds) Towards an Information Theory of Complex Networks. Birkhäuser, Boston, MA. https://doi.org/10.1007/978-0-8176-4904-3_9

Download citation

Publish with us

Policies and ethics