Skip to main content

Simulation-Based Innovization Using Data Mining for Production Systems Analysis

  • Chapter
  • First Online:
Multi-objective Evolutionary Optimisation for Product Design and Manufacturing

Abstract

This chapter introduces a novel methodology for the analysis and optimization of production systems. The methodology is based on the innovization procedure, originally introduced for unveiling new and innovative design principles in engineering design problems. Although the innovization method is based on multi-objective optimization and post-optimality analyses of optimised solutions, it stretches the scope beyond an optimization task and attempts to discover new design/operational rules/principles relating to decision variables and objectives, so that a deeper understanding of the problem can be obtained. By integrating the concept of innovization with discrete-event simulation and data mining techniques, a new set of powerful tools can be developed for general systems analysis, particularly suitable for production systems. The uniqueness of the integrated approach proposed in this chapter lies on applying data mining to the data sets generated from simulation-based multi-objective optimization, in order to automatically or semi-automatically discover and interpret the hidden relationships and patterns for optimal production systems design/reconfiguration. After describing the simulation-based innovization using data mining procedure and its difference from conventional simulation analysis methods, results from an industrial case study carried out for the improvement of an assembly line in an automotive manufacturer will be presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Cycle time, which is also called variously as manufacturing lead time, throughput time or sojourn time, is used in this paper to refer to the time from a job is released at the beginning of the line/system until it reaches its end (i.e., the time a part spends as WIP). This terminology follows the definition found in standard textbooks for manufacturing systems analysis, e.g., [36].

  2. 2.

    Defined in the shifting bottleneck detection method [41], active time is the time when the machine is working, changing tools or in repair and inactive time includes starving, blocked or waiting.

References

  1. Chryssolouris, G. (1992). Manufacturing systems: Theory and practice. New York: Springer.

    Google Scholar 

  2. Wu, B. (1992). Manufacturing systems design and analysis (2nd ed.). London: Chapman and Hall.

    Google Scholar 

  3. Cochran, D. S., Arinez, J. F., Duda, J. W., & Linck, J. (2002). A decomposition approach for manufacturing system design. Journal of Manufacturing Systems, 20(6), 371–389.

    Article  Google Scholar 

  4. Goldratt, E. M. (1991). Haystack Syndrome. Great Barrington, MA: North River Press.

    Google Scholar 

  5. Deb, K., & Srinivasan, A. (2006). Innovization: Innovating design principles through optimization. Proceedings of the Genetic and evolutionary Computation Conference (GECCO-2006), The Association of Computing Machinery (ACM), New York, (pp. 1629–1636).

    Google Scholar 

  6. Deb, K. (2001). Multi-objective optimization using evolutionary algorithms (3rd ed.). Wiltshire: Wiley.

    MATH  Google Scholar 

  7. Ng, A. H. C., Urenda, M., & Svensson, J. (2008). Multi-objective simulation optimization for production systems design using FACTS analyzer. Proceedings of the 2 nd Swedish Production Symposium (SPS’08), Stockholm, November 18–20, 2008.

    Google Scholar 

  8. Bandaru, S., & Deb, K. (2010). Automating discovery of innovative design principles through optimization. KanGAL Technical Report No.2010001.

    Google Scholar 

  9. Dudas, C., Ng, A. H. C., & Boström, H. (2008). Knowledge extraction in manufacturing using data mining. Proceedings of the 2 nd Swedish Production Symposium (SPS’08), Stockholm, November 18–20, 2008.

    Google Scholar 

  10. Rokach, L., & Maimon, O. Z. (2008). Data mining with decision trees: Theory and applications. Hackensack, NJ: World Scientific.

    MATH  Google Scholar 

  11. Fayyad, U., Piatetsky-Shapiro, G., & Smyth, P. (1996). The KDD process for extracting useful knowledge from volumes of data. Communications of the ACM, 39, 27–34.

    Article  Google Scholar 

  12. Han, J., & Kamber, M. (2004). Data mining: Concepts and techniques (7th ed.). San Francisco, Calif: Kaufmann.

    Google Scholar 

  13. Frawley, W. J., Piatetsky-Shapiro, G., & Matheus, C. J. (1992). Knowledge discovery in databases: An Overview. AI Magazine, 13, 57–70.

    Google Scholar 

  14. Vedder, A. (1999). KDD: The challenge to individualism. Ethics and Information Technology, 1, 275–281.

    Article  Google Scholar 

  15. Sumathi, S., & Sivanandam, S. N. (2006). Introduction to data mining and its applications. Berlin: Springer.

    Book  MATH  Google Scholar 

  16. Pachón, V., Jacinto, M., & Maña, M. J. (2009). Practical application of a KDD process to a sulphuric acid plant. In S. Omatu (Ed.), Distributed computing, artificial intelligence, bioinformatics, soft computing, and ambient assisted living: Proceedings of the 10 th International Work-Conference on Artificial Neural Networks, IWANN 2009 Workshops, Salamanca, Spain, part II, June 10–12, 2009. Berlin: Springer.

    Google Scholar 

  17. Liu, L., & Özsu, M. T. (2009). Encyclopedia of database systems. http://dx.doi.org/10.1007/978-0-387-39940-9.

  18. Weiss, S. M., & Indurkhya, N. (2002). Predictive data mining: A practical guide. San Francisco, CA: Morgan Kaufmann.

    Google Scholar 

  19. Neckel, P., & Knobloch, B. (2005). Customer relationship analytics: Praktische anwendung des data mining im CRM (1st ed.). Heidelberg: dpunkt-Verl.

    Google Scholar 

  20. Kohavi, R., & Provost, F. (1999). Glossary of terms. Machine Learning 30, 271–274, http://ai.stanford.edu/~ronnyk/glossary.html.

    Google Scholar 

  21. Duda, R. O., Hart, P. E., & Stork, D. G. (2001). Pattern classification (2nd ed.). New York, NY: Wiley.

    MATH  Google Scholar 

  22. Groth, R. (1998). Data mining: a hands-on approach for business professionals. Upper Saddle River, NJ: Prentice-Hall.

    Google Scholar 

  23. Bissantz, N., & Hagedorn, J. (2009). Data mining. Business & Information Systems Engineering, 1, 118–122.

    Article  Google Scholar 

  24. Geng, L., & Hamilton, H. J. (2006). Interestingness measures for data mining: A survey. ACM Computing Surveys, 38, 1–32.

    Article  Google Scholar 

  25. Nießen, J. (2010). Discovering knowledge from simulation-based evolutionary multi-objective optimization through data mining. MSc dissertation, School of Informatics and Communication, University of Skövde, Sweden.

    Google Scholar 

  26. Deb, K., Pratap, A., Agarwal, S., & Meyarivan, T. (2002). A fast and elitist multi-objective genetic algorithm: NSGA-II. IEEE Transaction on Evolutionary Computation, 6(2), 181–197.

    Article  Google Scholar 

  27. Ng, A. H. C., Syberfeldt, A, Grimm, H., & Svensson, J. (2008). Multi-objective simulation optimization and significant dominance for comparing production control mechanisms. Proceedings of the 18 th International Conference on Flexible Automation and Intelligent Manufacturing (FAIM’08), Skövde, Sweden (pp. 1210–1219).

    Google Scholar 

  28. Joseph, V. R., & Ying, H. (2008). Orthogonal-maximin Latin hypercube designs. Statistica Sinica, 18, 171–186.

    MathSciNet  MATH  Google Scholar 

  29. Liu, A., Ghosh, J., & Martin, C. (2007). Generative oversampling for imbalanced datasets. Proceedings of the 3 rd International Conference in Data Mining (pp. 66–72).

    Google Scholar 

  30. Chawla, N. V., Bowyer, K. W., Hall, L. O., & Kegelmeyer, W. P. (2002). SMOTE: Synthetic minority over-sampling technique. Journal of Artificial Intelligence Research, 16, 341–378.

    Google Scholar 

  31. Bauer, E., & Kohavi, R. (1999). An empirical comparison of voting classification algorithms: Bagging, boosting, and variants. Machine Learning, 36(1–2), 105–139.

    Article  Google Scholar 

  32. Rule Discovery System, v. 2.6.0, Compumine AB. Retrived April 2010, from http://www.compumine.com/web/public/rds.

  33. Lin, W., Alvarez, S. A., & Ruiz, C. (2002). Efficient adaptive-support association rule mining for recommender systems. Data Mining and Knowledge Discovery, 6, 83–105.

    Article  MathSciNet  Google Scholar 

  34. Ishibuchi, H., Kuwajima, I., & Nojima, Y. (2008). Evolutionary multiobjective rule selection for classification rule mining. In A. Ghosh, S. Dehuri, & S. Ghosh (Eds.), Multi-objective evolutionary algorithms for knowledge discovery from databases. Berlin: Springer.

    Google Scholar 

  35. Little, J. D. C. (1992). Are there ‘Laws’ of manufacturing. In J. A. Heim, & W.D. Compton (Eds.), Manufacturing systems: Foundations of world-class practice. Washington, DC: National Academy Press (pp. 180–188).

    Google Scholar 

  36. Hopp, W. J., & Spearman, M. L. (2000). Factory physics: foundations of manufacturing management (2nd ed.). Burr Ridge, IL: Irwin McGraw-Hill Higher Education.

    Google Scholar 

  37. Spearman, M. L., Woodruff, D. L., & Hopp, W. J. (1990). CONWIP: A pull alternative to Kanban. International Journal of Production Research, 28(5), 879–894.

    Article  Google Scholar 

  38. Ng, A.H.C., Grimm, H., Lezama, T., Persson, A., Andersson, M., & Jägstam, M. (2008). OPTIMISE: An internet-based platform for metamodel-assisted simulation optimization. In: X. Huang, Y-S. Chen, & S-L. Ao (Eds), Recent Advances in Communication Systems and Electrical Engineering. Heidelberg: Springer (pp. 281–296).

    Google Scholar 

  39. Law, A. M., & Kelton, W. D. (2000). Simulation Modeling and Analysis (3rd ed.). New York: McGraw-Hill Higher Education.

    Google Scholar 

  40. Goldratt, E. M., & Cox, J. (1986). The goal: a process of ongoing improvement (revised edition ed.). Croton-on-Hudson, NY: North River Press.

    Google Scholar 

  41. Roser, C., Nakano, M., & Tanaka, M. (2002). Shifting bottleneck detection. Proceedings of the 2002 Winter Simulation Conference, San Diego, CA, USA (pp.1079–1086).

    Google Scholar 

Download references

Acknowledgments

Results presented in this case study are based on parts of the research outcomes of the Factory Analyses in ConcepTual phase using Simulation (FACTS) project (2006–2008) and the FFI-HSO (Holistic Simulation Optimization) project (2009–2012). The authors gratefully acknowledge VINNOVA, Sweden, for the provision of research funding for these two projects.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amos H. C. Ng .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag London Limited

About this chapter

Cite this chapter

Ng, A.H.C., Dudas, C., Nießen, J., Deb, K. (2011). Simulation-Based Innovization Using Data Mining for Production Systems Analysis. In: Wang, L., Ng, A., Deb, K. (eds) Multi-objective Evolutionary Optimisation for Product Design and Manufacturing. Springer, London. https://doi.org/10.1007/978-0-85729-652-8_15

Download citation

  • DOI: https://doi.org/10.1007/978-0-85729-652-8_15

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-0-85729-617-7

  • Online ISBN: 978-0-85729-652-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics