Abstract
In this work we introduce a new kernel for image processing called the atomic function. This kernel is compact in the spatial domain, and it can be adapted to the behavior of the input signal by broadening or narrowing its band ensuring a maximum signal-to-noise ratio. It can be used for smooth differentiation of images in the quaternion algebra framework. We discuss the role of the quaternion atomic function with respect to monogenic signals. We then propose a steerable quaternion wavelet scheme for image structure and contour detection. Making use of the generalized Radon transform and images processed with the quaternion wavelet atomic function transform, we detect shape contours in color images. We believe that the atomic function is a promising kernel for image processing and scene analysis.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Bayro-Corrochano, E.: Geometric Computing for Wavelet Transforms, Robot Vision, Learning, Control and Action. Springer, Berlin (2010)
Brackx, F., Delanghe, R., Sommen, F.: Clifford Analysis. Pitman, Boston (1982)
Bülow, T.: Hypercomplex spectral signal representations for the processing and analysis of images. PhD thesis, Christian-Albert, Kiel University (1999)
Delanghe, R.: Clifford analysis: history and perspective. In: Computational Methods and Function Theory, vol. 1, pp. 107–153 (2001)
Felsberg, M., Sommer, G.: The monogenic signal. IEEE Trans. Signal Process. 49(2), 3136–3144 (2007)
Gelf’and, M.I., Graev, M.I., Vilenkin, N.Ya.: Generalized Functions, vol. 5, Integral Geometry and Representation Theory. Academic Press, San Diego (1966)
Guyaev, Yu.V., Kravchenko, V.F.: A new class of WA-systems of Kravchenko–Rvachev functions. Moscow Dokl. Math. 75(2), 325–332 (2007)
Hamilton, W.R.: Elements of Quaternions. Chelsea, New York (1969). Longmans Green, London (1866)
Gorshkov, A., Kravchenko, V.F., Rvachev, V.A.: Estimation of the discrete derivative of a signal on the basis of atomic functions. Izmer. Tekh. 1(8), 10 (1992)
Kingsbury, N.: Image processing with complex wavelets. Philos. Trans. R. Soc. Lond. A 357, 2543–2560 (1999)
Kovesi, P.: Invariant measures of images features from phase information. PhD thesis, University of Western Australia (1996)
Kravchenko, V.F., Perez-Meana, H.M., Ponomaryov, V.I.: Adaptive Digital Processing of Multidimensional Signals with Applications. Fizmatlit, Moscow (2009)
Magarey, J.F.A., Kingsbury, N.G.: Motion estimation using a complex-valued wavelet transform. IEEE Trans. Image Process. 6, 549–565 (1998)
Mallat, S.: A theory for multiresolution signal decomposition: the wavelet representation. IEEE Trans. Pattern Anal. Mach. Intell. 11(7), 674–693 (1989)
Mitrea, M.: Clifford Waveletes, Singular Integrals and Hardy Spaces. Lecture Notes in Mathematics, vol. 1575. Springer, Berlin (1994)
Nabighian, M.N.: Toward a three-dimensional automatic interpretation of potential field data via generalized Hilbert transforms: fundamental relations. Geophysics 49(6), 780–786 (1984)
Radon, J.: Über die Bestimmung von Funktionen durch ihre Integralwerte längs gewisser Mannigfaltigkeiten. Ber. Sächs. Akad. Wiss., Leipzig. Math.-Phys. Kl. 69, 262–277 (1917)
Rvachev, V.A.: Compactly supported solution of functional–differential equations and their applications. Russ. Math. Surv. 45(1), 87–120 (1990)
Pan, H.-P.: Uniform full information image matching complex conjugate wavelet pyramids. In: XVIII ISPRS Congress, vol. XXXI, Vienna, July 1996
Kolodyazhnya, V.M., Rvachev, V.A.: Atomic functions: generalization to the multivariable case and promising applications. Cybern. Syst. Anal. 43(6), 893–911 (2007)
Acknowledgements
We want to thank the financial support of the SEP/CONACYT - 2007-1 82084 grant.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2011 Springer-Verlag London Limited
About this chapter
Cite this chapter
Bayro-Corrochano, E., Moya-Sánchez, E.U. (2011). Quaternion Atomic Function for Image Processing. In: Dorst, L., Lasenby, J. (eds) Guide to Geometric Algebra in Practice. Springer, London. https://doi.org/10.1007/978-0-85729-811-9_8
Download citation
DOI: https://doi.org/10.1007/978-0-85729-811-9_8
Publisher Name: Springer, London
Print ISBN: 978-0-85729-810-2
Online ISBN: 978-0-85729-811-9
eBook Packages: Computer ScienceComputer Science (R0)