Abstract
The aim of this chapter is to propose two different approaches for color object recognition, both using the recently defined color Clifford Fourier transform. The first one deals with so-called Generalized Fourier Descriptors, the definition of which relies on plane motion group actions. The proposed color extension leads to more compact descriptors, with lower complexity and better recognition rates, than the already existing descriptors based on the processing of the r, g and b channels separately. The second approach concerns color phase correlation for color images. The idea here is to generalize in the Clifford framework the usual means of measuring correlation from the well-known shift theorem. Both methods necessitate to choose a 2-blade B of ℝ4 which corresponds to an analysis plane in the color space. The relevance of proposed methods for classification purposes is discussed on several color image databases. In particular, the influence of parameter B is studied regarding the type of images.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
A typical setting for μ is \((\mathbf {e}_{\mathbf{1}}+\mathbf{e}_{\mathbf{2}}+\mathbf{e}_{\mathbf{3}})/\sqrt{3}\), which corresponds to select the achromatic axis.
- 2.
More precisely, the two functions in the square brackets in (9.10).
References
Batard, T., Berthier, M., Saint-Jean, C.: Clifford Fourier transform for color image processing. In: Bayro-Corrochano, E., Scheuermann, G. (eds.) Geometric Algebra Computing in Engineering and Computer Science, pp. 135–161. Springer, Berlin (2010), Chap. 8
Chang, C.C., Lin, C.J.: Libsvm: a library for support vector machines (2001). Software available at http://www.csie.ntu.edu.tw/cjlin/libsvm
Chen, Y., Garcia, E.K., Gupta, M.R., Rahimi, A., Cazzanti, L.: Similarity-based classification: concepts and algorithms. J. Mach. Learn. Res. 10, 747–776 (2009)
Dorst, L., Mann, S., Bouma, T.: GABLE: A Matlab tutorial for geometric algebra (2002)
Ebling, J., Scheuermann, G.: Clifford Fourier transform on vector fields. IEEE Trans. Vis. Comput. Graph. 11, 469–479 (2005)
Ell, T.A., Sangwine, S.J.: Hypercomplex Fourier transforms of color images. IEEE Trans. Image Process. 16(1), 22–35 (2007)
Flusser, J., Suk, T., Zitova, B.: Moments and Moment Invariants in Pattern Recognition. Wiley, New York (2009)
Hestenes, D., Sobczyk, G.: Clifford Algebra to Geometric Calculus. Reidel, Dordrecht (1984)
Jain, A., Zongker, D.: Feature-selection: evaluation, application, and small sample performance. IEEE Trans. Pattern Anal. Mach. Intell. 19(2), 153–158 (1997)
Lounesto, P.: Clifford Algebras and Spinors, 2nd edn. Cambridge University Press, Cambridge (2001)
Lowe, D.G.: Object recognition from local scale-invariant features. In: International Conference on Computer Vision 99, pp. 1150–1157 (1999)
Nene, S.A., Nayar, S.K., Murase, H.: Columbia object image library (coil-100). Technical Report CUCS-006-96 (1996)
Phillips, P.J., Wechsler, H., Huang, J., Rauss, P.: The FERET database and evaluation procedure for face recognition algorithms. Image Vis. Comput. 16(5), 295–306 (1998)
Reddy, B., Chatterji, B.: An FFT-based technique for translation, rotation, and scale-invariant image registration. IEEE Trans. Image Process. 5(8), 1266–1271 (1996)
Smach, F., Lemaître, C., Gauthier, J.P., Miteran, J., Atri, M.: Generalized Fourier descriptors with applications to objects recognition in SVM context. J. Math. Imaging Vis. 30(1), 43–71 (2008)
Acknowledgements
This work is partially supported by the ONR Grant N00014-09-1-0493 and “La Région Poitou-Charentes”.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2011 Springer-Verlag London Limited
About this chapter
Cite this chapter
Mennesson, J., Saint-Jean, C., Mascarilla, L. (2011). Color Object Recognition Based on a Clifford Fourier Transform. In: Dorst, L., Lasenby, J. (eds) Guide to Geometric Algebra in Practice. Springer, London. https://doi.org/10.1007/978-0-85729-811-9_9
Download citation
DOI: https://doi.org/10.1007/978-0-85729-811-9_9
Publisher Name: Springer, London
Print ISBN: 978-0-85729-810-2
Online ISBN: 978-0-85729-811-9
eBook Packages: Computer ScienceComputer Science (R0)