Skip to main content

Color Object Recognition Based on a Clifford Fourier Transform

  • Chapter
Guide to Geometric Algebra in Practice

Abstract

The aim of this chapter is to propose two different approaches for color object recognition, both using the recently defined color Clifford Fourier transform. The first one deals with so-called Generalized Fourier Descriptors, the definition of which relies on plane motion group actions. The proposed color extension leads to more compact descriptors, with lower complexity and better recognition rates, than the already existing descriptors based on the processing of the r, g and b channels separately. The second approach concerns color phase correlation for color images. The idea here is to generalize in the Clifford framework the usual means of measuring correlation from the well-known shift theorem. Both methods necessitate to choose a 2-blade B of ℝ4 which corresponds to an analysis plane in the color space. The relevance of proposed methods for classification purposes is discussed on several color image databases. In particular, the influence of parameter B is studied regarding the type of images.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    A typical setting for μ is \((\mathbf {e}_{\mathbf{1}}+\mathbf{e}_{\mathbf{2}}+\mathbf{e}_{\mathbf{3}})/\sqrt{3}\), which corresponds to select the achromatic axis.

  2. 2.

    More precisely, the two functions in the square brackets in (9.10).

References

  1. Batard, T., Berthier, M., Saint-Jean, C.: Clifford Fourier transform for color image processing. In: Bayro-Corrochano, E., Scheuermann, G. (eds.) Geometric Algebra Computing in Engineering and Computer Science, pp. 135–161. Springer, Berlin (2010), Chap. 8

    Chapter  Google Scholar 

  2. Chang, C.C., Lin, C.J.: Libsvm: a library for support vector machines (2001). Software available at http://www.csie.ntu.edu.tw/cjlin/libsvm

  3. Chen, Y., Garcia, E.K., Gupta, M.R., Rahimi, A., Cazzanti, L.: Similarity-based classification: concepts and algorithms. J. Mach. Learn. Res. 10, 747–776 (2009)

    MathSciNet  Google Scholar 

  4. Dorst, L., Mann, S., Bouma, T.: GABLE: A Matlab tutorial for geometric algebra (2002)

    Google Scholar 

  5. Ebling, J., Scheuermann, G.: Clifford Fourier transform on vector fields. IEEE Trans. Vis. Comput. Graph. 11, 469–479 (2005)

    Article  Google Scholar 

  6. Ell, T.A., Sangwine, S.J.: Hypercomplex Fourier transforms of color images. IEEE Trans. Image Process. 16(1), 22–35 (2007)

    Article  MathSciNet  Google Scholar 

  7. Flusser, J., Suk, T., Zitova, B.: Moments and Moment Invariants in Pattern Recognition. Wiley, New York (2009)

    Book  MATH  Google Scholar 

  8. Hestenes, D., Sobczyk, G.: Clifford Algebra to Geometric Calculus. Reidel, Dordrecht (1984)

    MATH  Google Scholar 

  9. Jain, A., Zongker, D.: Feature-selection: evaluation, application, and small sample performance. IEEE Trans. Pattern Anal. Mach. Intell. 19(2), 153–158 (1997)

    Article  Google Scholar 

  10. Lounesto, P.: Clifford Algebras and Spinors, 2nd edn. Cambridge University Press, Cambridge (2001)

    Book  MATH  Google Scholar 

  11. Lowe, D.G.: Object recognition from local scale-invariant features. In: International Conference on Computer Vision 99, pp. 1150–1157 (1999)

    Chapter  Google Scholar 

  12. Nene, S.A., Nayar, S.K., Murase, H.: Columbia object image library (coil-100). Technical Report CUCS-006-96 (1996)

    Google Scholar 

  13. Phillips, P.J., Wechsler, H., Huang, J., Rauss, P.: The FERET database and evaluation procedure for face recognition algorithms. Image Vis. Comput. 16(5), 295–306 (1998)

    Article  Google Scholar 

  14. Reddy, B., Chatterji, B.: An FFT-based technique for translation, rotation, and scale-invariant image registration. IEEE Trans. Image Process. 5(8), 1266–1271 (1996)

    Article  Google Scholar 

  15. Smach, F., Lemaître, C., Gauthier, J.P., Miteran, J., Atri, M.: Generalized Fourier descriptors with applications to objects recognition in SVM context. J. Math. Imaging Vis. 30(1), 43–71 (2008)

    Article  Google Scholar 

Download references

Acknowledgements

This work is partially supported by the ONR Grant N00014-09-1-0493 and “La Région Poitou-Charentes”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jose Mennesson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag London Limited

About this chapter

Cite this chapter

Mennesson, J., Saint-Jean, C., Mascarilla, L. (2011). Color Object Recognition Based on a Clifford Fourier Transform. In: Dorst, L., Lasenby, J. (eds) Guide to Geometric Algebra in Practice. Springer, London. https://doi.org/10.1007/978-0-85729-811-9_9

Download citation

  • DOI: https://doi.org/10.1007/978-0-85729-811-9_9

  • Publisher Name: Springer, London

  • Print ISBN: 978-0-85729-810-2

  • Online ISBN: 978-0-85729-811-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics