Skip to main content

Methods and Technologies for Gait Analysis

  • Chapter
Computer Analysis of Human Behavior

Abstract

Gait analysis is a highly active research area with a wide range of applications in clinical settings, surveillance and human-computer interaction. The focus of this chapter is the clinical aspect of gait analysis, in which accuracy and precision are essential. Subsequently, the chapter focuses on various techniques of measuring gait and introduces taxonomy for their analysis. From this perspective, motion measurements using motion capture and inertial sensors are presented. Motion capture techniques are analyzed under sections of marker-based and markerless techniques and their common applications are exemplified. Additionally, accelerometers, gyroscopes, magnetometers and their applications are presented in the inertial measurements section. Finally, force measurements and measurement of electrical activity of muscles are explained briefly.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    If the external earth magnetic field is in alignment with any of the sensor axes, the rotation rate about that axis cannot be determined. This is called a singularity.

References

  1. Cappozzo, A., Della Croce, U., Leardini, A., Chiari, L.: Human movement analysis using stereophotogrammetry Part 1: theoretical background. Gait Posture 21, 186–196 (2005)

    Google Scholar 

  2. Aggarwal, J., Cai, Q.: Human motion analysis: a review. Comput. Vis. Image Underst. 73, 428–440 (1999)

    Article  Google Scholar 

  3. Davis, R.B., Õunpuu, S., Tyburski, D., Gage, J.R.: A gait analysis data collection and reduction technique. Hum. Mov. Sci. 10, 575–587 (1991)

    Article  Google Scholar 

  4. Cappozzo, A., Catani, F., Leardini, A., Benedetti, M.G., Della Croce, U.: Position and orientation in space of bones during movement: experimental artefacts. Clin. Biomech. 11(2), 90–100 (1995)

    Article  Google Scholar 

  5. Cappozzo, A., Catani, F., Della Croce, U., Leardini, A.: Position and orientation of bones during movement: anatomical frame definition and determination. Clin. Biomech. 10(4), 171–178 (1995)

    Article  Google Scholar 

  6. Benedetti, M.G., Catani, F., Leardini, A., Pignotti, E., Giannini, S.: Data management in gait analysis for clinical applications. Clin. Biomech. 13(3), 204–215 (1998)

    Article  Google Scholar 

  7. Donati, M., Camomilla, V., Vannozzi, G., Cappozzo, A.: Enhanced anatomical calibration in human movement analysis. Gait Posture 26, 179–185 (2007)

    Article  Google Scholar 

  8. Ferrari, A., et al.: Quantitative comparison of five current protocols in gait analysis. Gait Posture 28, 207–216 (2008)

    Article  Google Scholar 

  9. Baker, R.: Gait analysis methods in rehabilitation. J. NeuroEng. Rehabil. 3(4), 1–10 (2006)

    Google Scholar 

  10. Fioretti, S., Jetto, L.: Accurate derivate estimation from noisy data: a state space approach. Int. J. Syst. Sci. 20, 33–53 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  11. Chen, L., Armstrong, C.W., Raftopoulos, D.D.: An investigation on the accuracy of three-dimensional space reconstruction using the direct linear transformation technique. J. Biomech. 27(4), 493–500 (1994)

    Article  Google Scholar 

  12. Della Croce, U., Cappozzo, A.: A spot check for estimating stereophotogrammetric errors. Med. Biol. Eng. Comput. 38(3), 260–266 (2000)

    Article  Google Scholar 

  13. Abdel-Aziz, Y.I., Karara, H.M.: Direct linear transformation into object space coordinates in close range photogrammetry. In: Proceedings of the ASP Symposium on Close-Range Photogram, Urbana, IL, pp. 1–18 (1971)

    Google Scholar 

  14. Woltring, H.J.: Planar control in multi-camera calibration for three dimensional gait studies. J. Biomech. 13(1), 39–48 (1980)

    Article  Google Scholar 

  15. Chiari, L., Della Croce, U., Leardini, A., Cappozzo, A.: Human movement analysis using stereophotogrammetry Part 2: Instrumental errors. Gait Posture 21, 197–211 (2005)

    Article  Google Scholar 

  16. Lucchetti, L., Cappozzo, A., Cappello, A., Della Croce, U.: Skin movement artefact assessment and compensation in the estimation of knee-joint kinematics. J. Biomech. 31, 977–984 (1998)

    Article  Google Scholar 

  17. Alexander, E., Andriacchi, T.P.: Correcting for deformation in skin-based marker systems. Journal of Biomechanics 34, 355–361

    Google Scholar 

  18. Della Croce, U., Leardini, A., Chiari, L., Cappozzo, A.: Human movement analysis using stereophotogrammetry Part 4: assessment of anatomical landmarks misplacement and its effects on joint kinematics. Gait Posture 21, 226–237 (2005)

    Article  Google Scholar 

  19. Corazza, S., Mündermann, L., Chaudhari, A.M., Demattio, T., Cobelli, C., Andriacchi, T.P.: A markerless motion capture system to study musculoskeletal biomechanics: visual hull and simulated annealing approach. Ann. Biomed. Eng. 34(6), 1019–1029 (2006)

    Article  Google Scholar 

  20. Gavrila, D.M.: The visual analysis of human movement: a survey. Comput. Vis. Image Underst. 73(1), 82–98 (1999)

    Article  MATH  Google Scholar 

  21. Deutscher, J., Reid, A.: Articulated body motion capture by annealed particle filtering. In: Proceedings of Computer Vision and Pattern Recognition, South Carolina, pp. 126–133 (2000)

    Google Scholar 

  22. Poppe, R.: Vision-based human motion analysis: an overview. Comput. Vis. Image Underst. 108, 4–18 (2007)

    Article  Google Scholar 

  23. Cham, T.J., Rehg, J.M.: A multiple hypothesis approach to figure tracking. In: Proceedings of Computer Vision and Pattern Recognition, Ft. Collins, CO, pp. 239–245 (1999)

    Google Scholar 

  24. Howe, N.R., Leventon, M.E., Freeman, W.T.: Bayesian Reconstruction of 3D Human Motion from Single-Camera Video. Advances in Neural Information Processing Systems, vol. 12. MIT Press, Cambridge (2000)

    Google Scholar 

  25. Ju, S., Black, M.J., Yacoob, Y.: Cardboard people: a parametrized model of articulated image motion. In: Proceedings of IEEE International Conference on Automatic Face and Gesture Recognition, Killington, pp. 38–44 (1996)

    Google Scholar 

  26. Mori, G., Malik, J.: Recovering 3D human body configurations using shape contexts. IEEE Trans. Pattern Anal. Mach. Intell. 28(7), 1052–1062 (2006)

    Article  Google Scholar 

  27. Taylor, C.J.: Reconstruction of articulated objects from point correspondences in a single uncalibrated image. Comput. Vis. Image Underst. 80, 349–363 (2000)

    Article  MATH  Google Scholar 

  28. Elgammal, A., Lee, C.S.: Inferring 3D body pose from silhouettes using activity manifold learning. In: Proceedings of Computer Vision and Pattern Recognition, Washington DC, USA, pp. 681–688 (2004)

    Google Scholar 

  29. Bottino, A., Laurentini, A.: A silhouette based technique for the reconstruction of human movement. Comput. Vis. Image Underst. 83, 79–95 (2001)

    Article  MATH  Google Scholar 

  30. Bregler, C., Malik, J.: Tracking people with twists and exponential maps. In: Proceedings of Computer Vision and Pattern Recognition, Santa Barbara, CA, pp. 8–15 (1998)

    Google Scholar 

  31. Chu, C.W., Jenkins, O.C., Matari, M.J.: Towards model-free markerless motion capture. In: Proceedings of Computer Vision and Pattern Recognition, Madison, WI, pp. 475–482 (2003)

    Google Scholar 

  32. Grauman, K., Shakhnarovich, G., Darrell, T.: Inferring 3D structure with a statistical image-based shape model. In: Proceedings of International Conference on Computer Vision, Nice, France, vol. 1, pp. 641–647 (2003)

    Chapter  Google Scholar 

  33. Mündermann, L., Corazza, S., Andriacchi, T.P.: The evolution of methods for the capture of human movement leading to markerless motion capture for biomechanical applications. J. Neuroeng. Rehabil. (2006)

    Google Scholar 

  34. Bray, J.: Markerless based human motion capture: a survey. Department of Systems Engineering, Brunel University (2001)

    Google Scholar 

  35. Yun, X., Bachmann, E.: Design, implementation, and experimental results of a quaternion-based Kalman filter for human body motion tracking. IEEE Trans. Robot. 22(6), 1216–1227 (2006)

    Article  Google Scholar 

  36. Mathie, M.J., Celler, B.G., Lovell, N.H., Coster, A.C.F.: Classification of basic daily movements using a triaxial accelerometer. Med. Biol. Eng. Comput. 42, 679–687 (2004)

    Article  Google Scholar 

  37. Bao, L., Intille, S.: Activity recognition from user-annotated acceleration data. In: Proceedings of the 2nd International Conference on Pervasive Computing, Vienna, Austria, pp. 1–17 (2004)

    Google Scholar 

  38. Aminian, K., Robert, P.H., Buchser, E.E., Rutschmann, B., Hayoz, D., Deparion, M.: Physical activity monitoring based on accelerometry: validation and comparison with video observation. Med. Biol. Eng. Comput. 37(3), 304–308 (1999)

    Article  Google Scholar 

  39. Aminian, K., Najafi, B., Büla, C., Leyvraz, P.F., Robert, P.H.: Spatio-temporal parameters of gait measured by an ambulatory system using miniature gyroscopes. J. Biomech. 35, 689–699 (2002)

    Article  Google Scholar 

  40. Tong, K., Granat, M.H.: A practical gait analysis system using gyroscopes. Med. Eng. Phys. 21, 87–94 (1999)

    Article  Google Scholar 

  41. Bachmann, E.R., Yun, X., Mickinney, D., McGhee, R.B., Zyda, M.J.: Design and Implementation of MARG sensors for 3-DOF orientation measurement of rigid bodies. In: Proceedings of the 2003 IEEE International Conference On Robotics & Automation, Taipei, Taiwan, September 14–19 2003

    Google Scholar 

  42. Marins, J.L., Yun, X., Bachmann, E.R., McGhee, R.B., Zyda, M.J.: An extended Kalman filter for quaternion-based orientation estimation using MARG sensors. In: Proceedings of the 2001 IEEE/RSJ International Conference on Intelligent Robots and Systems, Maui, Hawaii, USA, pp. 2003–2011 (2001)

    Google Scholar 

  43. Shuster, M.D., Oh, S.D.: Three-axis attitude determination from vector observations. J. Guid. Control 4(1), 70–77 (1981)

    Article  MATH  Google Scholar 

  44. Vaughan, C.L., Davis, B.L., Jeremy, C.O.C.: Dynamics of Human Gait. Kiboho, Cape Town (1999)

    Google Scholar 

  45. Soderberg, G.L., Cook, T.M.: Electromyography in biomechanics. Phys. Ther. 64, 1813–1820 (1984)

    Google Scholar 

  46. De Luca, C.J.: The use of surface electromyography in biomechanics. J. Appl. Biomech. 13, 135–163 (1997)

    Google Scholar 

  47. Saey, D., Côté, C.H., Mador, J., Laviolette, L., Leblanc, P., Jobin, J., Maltais, F.: Assessment of muscle fatigue during exercise in chronic obstructive pulmonary disease. Muscle Nerve 34, 62–71 (2006)

    Article  Google Scholar 

  48. Mesin, L., Smith, S., Hugo, S., Viljoen, S., Hanekom, T.: Effect of spatial filtering on crosstalk reduction in surface EMG recordings. Med. Eng. Phys. 31, 374–383 (2009)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elif Surer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag London Limited

About this chapter

Cite this chapter

Surer, E., Kose, A. (2011). Methods and Technologies for Gait Analysis. In: Salah, A., Gevers, T. (eds) Computer Analysis of Human Behavior. Springer, London. https://doi.org/10.1007/978-0-85729-994-9_5

Download citation

  • DOI: https://doi.org/10.1007/978-0-85729-994-9_5

  • Publisher Name: Springer, London

  • Print ISBN: 978-0-85729-993-2

  • Online ISBN: 978-0-85729-994-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics