Skip to main content

Predicting Host Phenotype Based on Gut Microbiome Using a Convolutional Neural Network Approach

  • Protocol
  • First Online:
Artificial Neural Networks

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2190))

Abstract

Accurate prediction of the host phenotypes from a microbial sample and identification of the associated microbial markers are important in understanding the impact of the microbiome on the pathogenesis and progression of various diseases within the host. A deep learning tool, PopPhy-CNN, has been developed for the task of predicting host phenotypes using a convolutional neural network (CNN). By representing samples as annotated taxonomic trees and further representing these trees as matrices, PopPhy-CNN utilizes the CNN’s innate ability to explore locally similar microbes on the taxonomic tree. Furthermore, PopPhy-CNN can be used to evaluate the importance of each taxon in the prediction of host status. Here, we describe the underlying methodology, architecture, and core utility of PopPhy-CNN. We also demonstrate the use of PopPhy-CNN on a microbial dataset.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Marchesi JR, Adams DH, Fava F et al (2016) The gut microbiota and host health: a new clinical frontier. Gut 65(2):330–339

    PubMed  Google Scholar 

  2. Pascale A, Marchesi N, Marelli C et al (2018) Microbiota and metabolic diseases. Endocrine 61(3):357–371. https://doi.org/10.1007/s12020-018-1605-5

    Article  CAS  PubMed  Google Scholar 

  3. Hu J, Koh H, He L et al (2018) A two-stage microbial association mapping framework with advanced FDR control. Microbiome 6(1):131

    PubMed  PubMed Central  Google Scholar 

  4. Vangay P, Hillmann BM, Knights D (2019) Microbiome Learning Repo (ML Repo): A public repository of microbiome regression and classification tasks. GigaScience 8(5):giz042

    PubMed  PubMed Central  Google Scholar 

  5. Pasolli E, Truong DT, Malik F et al (2016) Machine learning meta-analysis of large metagenomic datasets: tools and biological insights. PLoS Comput Biol 12(7):e1004977

    PubMed  PubMed Central  Google Scholar 

  6. Ditzler G, Polikar R, Rosen G (2015) Multi-layer and recursive neural networks for metagenomic classification. IEEE Trans Nanobioscience 14(6):608–616

    PubMed  Google Scholar 

  7. Reiman D, Metwally A, Dai Y (2017) Using convolutional neural networks to explore the microbiome. Proc. 2017 39th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC) 4269-4272

    Google Scholar 

  8. Reiman D, Metwally AA, and Dai Y (2018) PopPhy-CNN: A Phylogenetic Tree Embedded Architecture for Convolution Neural Networks for Metagenomic Data. bioRxiv

    Google Scholar 

  9. Fioravanti D, Giarratano Y, Maggio V et al (2018) Phylogenetic convolutional neural networks in metagenomics. BMC Bioinformatics 19(2):49

    PubMed  PubMed Central  Google Scholar 

  10. Thanh Hai Nguyen, Yann Chevaleyre, Edi Prifti et al (2017) Deep Learning for Metagenomic Data: using 2D Embeddings and Convolutional Neural Networks. arXiv:1712.00244

    Google Scholar 

  11. Oudah M, Henschel A (2018) Taxonomy-aware feature engineering for microbiome classification. BMC Bioinformatics 19(1):227

    PubMed  PubMed Central  Google Scholar 

  12. Lloyd-Price J, Arze C, Ananthakrishnan AN et al (2019) Multi-omics of the gut microbial ecosystem in inflammatory bowel diseases. Nature 569(7758):655–662

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Esteva A, Robicquet A, Ramsundar B et al (2019) A guidle to deep learning in healthcare. Nat Med 25(1):24–29

    CAS  PubMed  Google Scholar 

  14. Eraslan G, Avsec Ž, Gagneur J et al (2019) Deep learning: new computational modelling techniques for genomics. Nat Rev Genet 20(7):389–403

    CAS  PubMed  Google Scholar 

  15. Lecun Y, Bottou L, Bengio Y et al (1998) Gradient-based learning applied to document recognition. Proc IEEE 86(11):2278–2324

    Google Scholar 

  16. Zhao N, Chen J, Carroll Ian M et al (2015) Testing in microbiome-profiling studies with MiRKAT, the microbiome regression-based kernel association test. Am J Hum Genet 96(5):797–807

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Gilbert JA, Quinn RA, Debelius J et al (2016) Microbiome-wide association studies link dynamic microbial consortia to disease. Nature 535:94–103

    CAS  PubMed  Google Scholar 

  18. Xia Y, Sun J (2017) Hypothesis testing and statistical analysis of microbiome. Genes Dis 4(3):138–148

    PubMed  PubMed Central  Google Scholar 

  19. Collins C, Didelot X (2018) A phylogenetic method to perform genome-wide association studies in microbes that accounts for population structure and recombination. PLoS Comput Biol 14(2):e1005958

    PubMed  PubMed Central  Google Scholar 

  20. Knights D, Parfrey LW, Zaneveld J et al (2011) Human-associated microbial signatures: examining their predictive value. Cell Host Microbe 10(4):292–296. https://doi.org/10.1016/j.chom.2011.1009.1003

    Article  CAS  PubMed  Google Scholar 

  21. Thomas T, Gilbert J, Meyer F (2012) Metagenomics—a guide from sampling to data analysis. Microb Inform Exp 2(1):3

    PubMed  PubMed Central  Google Scholar 

  22. Caporaso JG, Kuczynski J, Stombaugh J et al (2010) QIIME allows analysis of high-throughput community sequencing data. Nat Methods 7:335

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Meyer F, Paarmann D, D'Souza M et al (2008) The metagenomics RAST server—a public resource for the automatic phylogenetic and functional analysis of metagenomes. BMC Bioinformatics 9:386

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Shannon P, Markiel A, Ozier O et al (2003) Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res 13(11):2498–2504

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yang Dai .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Reiman, D., Farhat, A.M., Dai, Y. (2021). Predicting Host Phenotype Based on Gut Microbiome Using a Convolutional Neural Network Approach. In: Cartwright, H. (eds) Artificial Neural Networks. Methods in Molecular Biology, vol 2190. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0826-5_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0826-5_12

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0825-8

  • Online ISBN: 978-1-0716-0826-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics