Skip to main content

Neuroevolutive Algorithms Applied for Modeling Some Biochemical Separation Processes

  • Protocol
  • First Online:
Artificial Neural Networks

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2190))

Abstract

Combining artificial neural networks with evolutive/bioinspired approaches is a technique that can solve a variety of issues regarding the topology determination and training for neural networks or for process optimization. In this chapter, the main mechanisms used in neuroevolution are discussed and some biochemical separation examples are given to underline the efficiency of these tools. For the current case studies (reactive extraction of folic acid and pertraction of vitamin C), the bioinspired metaheuristic included in the neuroevolutive procedures is represented by Differential Evolution, an algorithm that has shown a great potential to solve a variety of problems from multiple domains.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Curteanu S, Cartwright HM (2011) Neural networks applied in chemistry. I. Determination of the optimal topology of multilayer perceptron neural networks. J Chemometrics 25(10):527–549

    CAS  Google Scholar 

  2. Ragg T, Gutjahr S (1997) Automatic determination of optimal network topologies based on information theory and evolution. In: EUROMICRO 97 proceedings of the 23rd EUROMICRO conference: new frontiers of information technology (cat. no. 97TB100167)

    Google Scholar 

  3. Cartwright HM, Curteanu S (2013) Neural networks applied in chemistry. II. Neuro-evolutionary techniques in process modeling and optimization. Ind Eng Chem Res 52(36):12673–12688

    CAS  Google Scholar 

  4. Ławryńczuk M (2008) Modelling and nonlinear predictive control of a yeast fermentation biochemical reactor using neural networks. Chem Eng J 145(2):290–307

    Google Scholar 

  5. Nagy ZK (2007) Model based control of a yeast fermentation bioreactor using optimally designed artificial neural networks. Chem Eng J 127(1):95–109

    CAS  Google Scholar 

  6. Basri M, Rahman RN, Ebrahimpour A, Salleh AB et al (2007) Comparison of estimation capabilities of response surface methodology (RSM) with artificial neural network (ANN) in lipase-catalyzed synthesis of palm-based wax ester. BMC Biotechnol 7:53

    PubMed  PubMed Central  Google Scholar 

  7. da Cruz Meleiro LA, Von Zuben FJ, Maciel Filho R (2009) Constructive learning neural network applied to identification and control of a fuel-ethanol fermentation process. Eng Apps Artific Intellig 22(2):201–215

    Google Scholar 

  8. Chen F, Li H, Xu Z, Hou S et al (2015) User-friendly optimization approach of fed-batch fermentation conditions for the production of iturin A using artificial neural networks and support vector machine. Electron J Biotechnol 18(4):273–280

    CAS  Google Scholar 

  9. Esfahanian M, Nikzad M, Najafpour G, Ghoreyshi AA (2013) Modeling and optimization of ethanol fermentation using Saccharomyces cerevisiae: response surface methodology and artificial neural network. Chem Ind Chem Eng Quart 19(2):241–252

    CAS  Google Scholar 

  10. Silva R, Ferreira S, Bonifacio MJ, Dias JM et al (2012) Optimization of fermentation conditions for the production of human soluble catechol-O-methyltransferase by Escherichia coli using artificial neural network. J Biotechnol 160(3–4):161–168

    CAS  PubMed  Google Scholar 

  11. Storn R, Price KV (1995) Differential evolution–a simple and efficient adaptive scheme for global optimization over continuous spaces. Tech. Report TR-95-012. International Computer Sciences Institute, Berkeley

    Google Scholar 

  12. Subudhi B, Jena D (2008) Differential evolution and levenberg marquardt trained neural network scheme for nonlinear system identification. Neural Proc Lett 27(3):285–296

    Google Scholar 

  13. Zaharie D (2009) Influence of crossover on the behavior of differential evolution algorithms. Appl Soft Comput 9(3):1126–1138

    Google Scholar 

  14. Price K, Storn RM, Lampinen JA (2006) Differential evolution: a practical approach to global optimization. Springer Science & Business Media, Berlin

    Google Scholar 

  15. Subudhi B, Jena D (2009) An improved differential evolution trained neural network scheme for nonlinear system identification. Int J Automat Comput 6(2):137–144

    Google Scholar 

  16. Thangaraj R, Pant M, Abraham A (2009) A simple adaptive differential evolution algorithm. In: 2009 world congress on nature and biologically inspired computing (NaBIC), IEEE

    Google Scholar 

  17. Lu Y, Zhou J, Qin H, Li Y et al (2010) An adaptive hybrid differential evolution algorithm for dynamic economic dispatch with valve-point effects. Expert Syst Appl 37(7):4842–4849

    Google Scholar 

  18. Pan Q-K, Suganthan PN, Wang L, Gao L et al (2011) A differential evolution algorithm with self-adapting strategy and control parameters. Compt Operat Res 38(1):394–408

    Google Scholar 

  19. Kapadi MD, Gudi RD (2004) Optimal control of fed-batch fermentation involving multiple feeds using differential evolution. Process Biochem 39(11):1709–1721

    CAS  Google Scholar 

  20. Moonchai S, Madlhoo W, Jariyachavalit K, Shimizu H et al (2005) Application of a mathematical model and Differential Evolution algorithm approach to optimization of bacteriocin production by Lactococcus lactis C7. Bioprocess Biosyst Eng 28(1):15–26

    CAS  PubMed  Google Scholar 

  21. Rocha M, Pinto JP, Rocha I, Ferreira EC (2007) Evaluating evolutionary algorithms and differential evolution for the online optimization of fermentation processes. In: European conference on evolutionary computation, machine learning and data mining in bioinformatics. Springer

    Google Scholar 

  22. Yao X (1999) Evolving artificial neural networks. Proc IEEE 87(9):1423–1447

    Google Scholar 

  23. Floreano D, Dürr P, Mattiussi C (2008) Neuroevolution: from architectures to learning. Evol Intell 1(1):47–62

    Google Scholar 

  24. Durr P, Mattiussi C, Floreano D (2006) Neuroevolution with analog genetic encoding. In: Runarsson T et al (eds) Parallel problem solving from nature—PPSN IX. Springer, Berlin, pp 671–680

    Google Scholar 

  25. Mouret J-B, Doncieux S (2008) MENNAG: a modular, regular and hierarchical encoding for neural-networks based on attribute grammars. Evolut Intell 1(3):187–207

    Google Scholar 

  26. Fischer MM, Reismann M, Hlavácková-Schindler K (1999) Parameter estimation in neural spatial interaction modelling by a derivative free global optimization method. In: International conference on GeoComputation, 4, Fredericksburg, Virginia, USA

    Google Scholar 

  27. Plagianakos V, Magoulas G, Nousis N, Vrahatis M (2001) Training multilayer networks with discrete activation functions. In: IJCNN'01. International joint conference on neural networks. Proceedings (cat. no. 01CH37222). IEEE

    Google Scholar 

  28. Lahiri SK, Khalfe N (2010) Modeling of commercial ethylene oxide reactor: a hybrid approach by artificial neural network and differential evolution. Int J Chem Reactor Eng 8(1). https://doi.org/10.2202/1542-6580.2019

  29. Bhuiyan MZA (2009) An algorithm for determining neural network architecture using differential evolution. In 2009 international conference on business intelligence and financial engineering. IEEE

    Google Scholar 

  30. Dragoi E-N, Curteanu S, Leon F, Galaction A-I et al (2011) Modeling of oxygen mass transfer in the presence of oxygen-vectors using neural networks developed by differential evolution algorithm. Eng Apps Artific Intellig 24(7):1214–1226

    Google Scholar 

  31. Drăgoi E-N, Curteanu S, Lisa C (2012) A neuro-evolutive technique applied for predicting the liquid crystalline property of some organic compounds. Eng Optimiz 44(10):1261–1277

    Google Scholar 

  32. Dragoi E-N, Curteanu S, Galaction A-I, Cascaval D (2013) Optimization methodology based on neural networks and self-adaptive differential evolution algorithm applied to an aerobic fermentation process. App Soft Comp 13(1):222–238

    Google Scholar 

  33. Tizhoosh HR (2005) Opposition-based learning: a new scheme for machine intelligence. In: International conference on computational intelligence for modeling,control and international conference on intelligent agents, web technologies and internet commerce, Vienna

    Google Scholar 

  34. Dragoi E-N, Curteanu S, Fissore D (2012) Freeze-drying modeling and monitoring using a new neuro-evolutive technique. Chem Eng Sci 72:195–204

    CAS  Google Scholar 

  35. Dragoi E-N, Curteanu S, Cascaval D, Galaction A-I (2016) Artificial neural network modeling of mixing efficiency in a split-cylinder gas-lift bioreactor for Yarrowia Lipolytica suspensions. Chem Eng Comms 203(12):1600–1608

    CAS  Google Scholar 

  36. Mizzi B, Meyer M, Prat L, Augier F et al (2017) General design methodology for reactive liquid–liquid extraction: application to dicarboxylic acid recovery in fermentation broth. Chem Eng Process 113:20–34

    CAS  Google Scholar 

  37. Jessop PG (2011) Searching for green solvents. Green Chem 13(6):1391–1398

    CAS  Google Scholar 

  38. Sprakel L, Schuur B (2018) Solvent developments for liquid-liquid extraction of carboxylic acids in perspective. Sep Purif Technol 211:935–957

    Google Scholar 

  39. Demesa AG, Laari A, Tirronen E, Turunen I (2015) Comparison of solvents for the recovery of low-molecular carboxylic acids and furfural from aqueous solutions. Chem Eng Res Design 93:531–540

    CAS  Google Scholar 

  40. Fan Y, Cai D, Yang L, Chen X et al (2019) Extraction behavior of nicotinic acid and nicotinamide in ionic liquids. Chem Eng Res Design 146:336–343

    CAS  Google Scholar 

  41. Chemarin F, Moussa M, Allais F, Trelea I et al (2019) Recovery of 3-hydroxypropionic acid from organic phases after reactive extraction with amines in an alcohol-type solvent. Sep Purif Technol 219:260–267

    CAS  Google Scholar 

  42. Eda S, Borra A, Parthasarathy R, Bankupalli S et al (2018) Recovery of levulinic acid by reactive extraction using tri-n-octylamine in methyl isobutyl ketone: equilibrium and thermodynamic studies and optimization using Taguchi multivariate approach. Sep Purif Technol 197:314–324

    CAS  Google Scholar 

  43. Gorden J, Zeiner T, Sadowski G, Brandenbusch C (2016) Recovery of cis, cis-muconic acid from organic phase after reactive extraction. Sep Purif Technol 169:1–8

    CAS  Google Scholar 

  44. Brouwer T, Blahusiak M, Babic K, Schuur B (2017) Reactive extraction and recovery of levulinic acid, formic acid and furfural from aqueous solutions containing sulphuric acid. Sep Purif Technol 185:186–195

    CAS  Google Scholar 

  45. Djas M, Henczka M (2018) Reactive extraction of carboxylic acids using organic solvents and supercritical fluids: a review. Sep Purif Technol 201:106–119

    CAS  Google Scholar 

  46. Galaction AI, Blaga AC, Caşcaval D, Folescu E (2005) Separation of vitamins by non-conventional techniques. Facilitated pertraction of vitamin C. Rev Med Chir Soc Med Nat Iasi 109(4):895–898

    PubMed  Google Scholar 

  47. Galaction A-I, Blaga A-C, Cascaval D (2005) The influence of pH and solvent polarity on the mechanism and efficiency of folic acid extraction with Amberlite LA-2. Chem Ind Chem Eng Quart 11(2):63–68

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Curteanu, S., Dragoi, EN., Blaga, A.C., Galaction, A.I., Cascaval, D. (2021). Neuroevolutive Algorithms Applied for Modeling Some Biochemical Separation Processes. In: Cartwright, H. (eds) Artificial Neural Networks. Methods in Molecular Biology, vol 2190. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0826-5_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0826-5_5

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0825-8

  • Online ISBN: 978-1-0716-0826-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics