Skip to main content

Computational Approaches for De Novo Drug Design: Past, Present, and Future

  • Protocol
  • First Online:
Artificial Neural Networks

Abstract

Drug discovery is time- and resource-consuming. To this end, computational approaches that are applied in de novo drug design play an important role to improve the efficiency and decrease costs to develop novel drugs. Over several decades, a variety of methods have been proposed and applied in practice. Traditionally, drug design problems are always taken as combinational optimization in discrete chemical space. Hence optimization methods were exploited to search for new drug molecules to meet multiple objectives. With the accumulation of data and the development of machine learning methods, computational drug design methods have gradually shifted to a new paradigm. There has been particular interest in the potential application of deep learning methods to drug design. In this chapter, we will give a brief description of these two different de novo methods, compare their application scopes and discuss their possible development in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Polishchuk PG, Madzhidov TI, Varnek A (2013) Estimation of the size of drug-like chemical space based on GDB-17 data. J Comput Aided Mol Des 27(8):675–679. https://doi.org/10.1007/s10822-013-9672-4

    Article  CAS  PubMed  Google Scholar 

  2. Macarron R, Banks MN, Bojanic D et al (2011) Impact of high-throughput screening in biomedical research. Nat Rev Drug Discov 10(3):188–195. https://doi.org/10.1038/nrd3368

    Article  CAS  PubMed  Google Scholar 

  3. Giacomini KM, Krauss RM, Roden DM et al (2007) When good drugs go bad. Nature 446(7139):975–977. https://doi.org/10.1038/446975a

    Article  CAS  PubMed  Google Scholar 

  4. Lounkine E, Keiser MJ, Whitebread S et al (2012) Large-scale prediction and testing of drug activity on side-effect targets. Nature 486(7403):361–367. https://doi.org/10.1038/nature11159

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Paul SM, Mytelka DS, Dunwiddie CT et al (2010) How to improve R&D productivity: the pharmaceutical industry’s grand challenge. Nat Rev Drug Discov 9(3):203–214. https://doi.org/10.1038/nrd3078

    Article  CAS  PubMed  Google Scholar 

  6. Kapetanovic IM (2008) Computer-aided drug discovery and development (CADDD): in silico-chemico-biological approach. Chem Biol Interact 171(2):165–176. https://doi.org/10.1016/j.cbi.2006.12.006

    Article  CAS  PubMed  Google Scholar 

  7. Schneider G, Fechner U (2005) Computer-based de novo design of drug-like molecules. Nat Rev Drug Discov 4(8):649–663. https://doi.org/10.1038/nrd1799

    Article  CAS  PubMed  Google Scholar 

  8. Chen H, Engkvist O, Wang Y et al (2018) The rise of deep learning in drug discovery. Drug Discov Today. https://doi.org/10.1016/j.drudis.2018.01.039

  9. LeCun Y, Bengio Y, Hinton G (2015) Deep learning. Nature 521(7553):436–444. https://doi.org/10.1038/nature14539

    Article  CAS  PubMed  Google Scholar 

  10. Krizhevsky A, Sutskever I, Hinton GE (2012) ImageNet classification with deep convolutional neural networks. In: Paper presented at the proceedings of the 25th international conference on neural information processing systems—volume 1, Lake Tahoe, Nevada.

    Google Scholar 

  11. Goodfellow IJ, Pouget-Abadie J, Mirza M et al (2014) Generative adversarial networks. ArXiv:1406.2661

    Google Scholar 

  12. Silver D, Huang A, Maddison CJ et al (2016) Mastering the game of go with deep neural networks and tree search. Nature 529(7587):484–489. https://doi.org/10.1038/nature16961

    Article  CAS  PubMed  Google Scholar 

  13. Gomez-Bombarelli R, Wei JN, Duvenaud D et al (2018) Automatic chemical design using a data-driven continuous representation of molecules. ACS Cent Sci 4(2):268–276. https://doi.org/10.1021/acscentsci.7b00572

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Nicolaou CA, Brown N (2013) Multi-objective optimization methods in drug design. Drug Discov Today Technol 10(3):e427–e435. https://doi.org/10.1016/j.ddtec.2013.02.001

    Article  PubMed  Google Scholar 

  15. Sanchez-Lengeling B, Aspuru-Guzik A (2018) Inverse molecular design using machine learning: generative models for matter engineering. Science 361(6400):360–365. https://doi.org/10.1126/science.aat2663

    Article  CAS  PubMed  Google Scholar 

  16. van Westen GJP, Wegner JK, IJzerman AP et al (2011) Proteochemometric modeling as a tool to design selective compounds and for extrapolating to novel targets. Med Chem Commun 2(1):16–30. https://doi.org/10.1039/C0MD00165A

    Article  Google Scholar 

  17. Rogers D, Hahn M (2010) Extended-connectivity fingerprints. J Chem Inf Model 50(5):742–754. https://doi.org/10.1021/ci100050t

    Article  CAS  PubMed  Google Scholar 

  18. von Lilienfeld OA (2013) First principles view on chemical compound space: gaining rigorous atomistic control of molecular properties. Int J Quantum Chem 113(12):1676–1689. https://doi.org/10.1002/qua.24375

    Article  CAS  Google Scholar 

  19. Elton DC, Boukouvalas Z, Fuge MD et al (2019) Deep learning for molecular design—a review of the state of the art. Mol Syst Design Eng 4(4):828–849. https://doi.org/10.1039/C9ME00039A

    Article  CAS  Google Scholar 

  20. Noel OB, Andrew D (2018) DeepSMILES: an adaptation of SMILES for use in machine-learning of chemical structures. doi:https://doi.org/10.26434/chemrxiv.7097960.v1

  21. Josep A-P, Simon Viet J, Oleksii P et al (2019) Randomized SMILES strings improve the quality of molecular generative models. https://doi.org/10.26434/chemrxiv.8639942.v2

  22. Krenn M, Häse F, Nigam A et al (2019) SELFIES: a robust representation of semantically constrained graphs with an example application in chemistry. arXiv. e-prints:arXiv:1905.13741

    Google Scholar 

  23. Emmerich MTM, Deutz AH (2018) A tutorial on multiobjective optimization: fundamentals and evolutionary methods. Nat Comput 17(3):585–609. https://doi.org/10.1007/s11047-018-9685-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Mock WBT (2011) Pareto Optimality. In: Chatterjee DK (ed) Encyclopedia of global justice. Springer, Dordrecht, pp 808–809. https://doi.org/10.1007/978-1-4020-9160-5_341

    Chapter  Google Scholar 

  25. Zitzler E, Deb K, Thiele L (2000) Comparison of multiobjective evolutionary algorithms: empirical results. Evol Comput 8(2):173–195. https://doi.org/10.1162/106365600568202

    Article  CAS  PubMed  Google Scholar 

  26. Deb K, Pratap A, Agarwal S et al (2002) A fast and elitist multiobjective genetic algorithm: NSGA-II. Trans Evol Comp 6(2):182–197. https://doi.org/10.1109/4235.996017

    Article  Google Scholar 

  27. Emmerich M, Beume N, Naujoks B. (2005) An EMO Algorithm using the hypervolume measure as selection criterion. In: 2005 evolutionary multi-criterion optimization. Springer Berlin, pp 62–76

    Google Scholar 

  28. Wang R, Gao Y, Lai L (2000) LigBuilder: a multi-purpose program for structure-based drug design. Mol Model Ann 6(7):498–516. https://doi.org/10.1007/s0089400060498

    Article  CAS  Google Scholar 

  29. Douguet D, Thoreau E, Grassy G (2000) A genetic algorithm for the automated generation of small organic molecules: drug design using an evolutionary algorithm. J Comput Aided Mol Des 14(5):449–466. https://doi.org/10.1023/A:1008108423895

    Article  CAS  PubMed  Google Scholar 

  30. Pegg SC, Haresco JJ, Kuntz ID (2001) A genetic algorithm for structure-based de novo design. J Comput Aided Mol Des 15(10):911–933. https://doi.org/10.1023/a:1014389729000

    Article  CAS  PubMed  Google Scholar 

  31. Budin N, Majeux N, Tenette-Souaille C et al (2001) Structure-based ligand design by a build-up approach and genetic algorithm search in conformational space. J Comput Chem 22(16):1956–1970. https://doi.org/10.1002/jcc.1145

    Article  CAS  Google Scholar 

  32. Vinkers HM, de Jonge MR, Daeyaert FF et al (2003) SYNOPSIS: SYNthesize and OPtimize System in Silico. J Med Chem 46(13):2765–2773. https://doi.org/10.1021/jm030809x

    Article  CAS  PubMed  Google Scholar 

  33. Douguet D, Munier-Lehmann H, Labesse G et al (2005) LEA3D: a computer-aided ligand design for structure-based drug design. J Med Chem 48(7):2457–2468. https://doi.org/10.1021/jm0492296

    Article  CAS  PubMed  Google Scholar 

  34. Dey F, Caflisch A (2008) Fragment-based de novo ligand design by multiobjective evolutionary optimization. J Chem Inf Model 48(3):679–690. https://doi.org/10.1021/ci700424b

    Article  CAS  PubMed  Google Scholar 

  35. van der Horst E, Marques-Gallego P, Mulder-Krieger T et al (2012) Multi-objective evolutionary design of adenosine receptor ligands. J Chem Inf Model 52(7):1713–1721. https://doi.org/10.1021/ci2005115

    Article  CAS  PubMed  Google Scholar 

  36. Lameijer EW, Kok JN, Back T et al (2006) The molecule evoluator. An interactive evolutionary algorithm for the design of drug-like molecules. J Chem Inf Model 46(2):545–552. https://doi.org/10.1021/ci050369d

    Article  CAS  PubMed  Google Scholar 

  37. Nicolaou CA, Apostolakis J, Pattichis CS (2009) De novo drug design using multiobjective evolutionary graphs. J Chem Inf Model 49(2):295–307. https://doi.org/10.1021/ci800308h

    Article  CAS  PubMed  Google Scholar 

  38. Fechner U, Schneider G (2006) Flux (1): a virtual synthesis scheme for fragment-based de novo design. J Chem Inf Model 46(2):699–707. https://doi.org/10.1021/ci0503560

    Article  CAS  PubMed  Google Scholar 

  39. Schneider G, Lee ML, Stahl M et al (2000) De novo design of molecular architectures by evolutionary assembly of drug-derived building blocks. J Comput Aided Mol Des 14(5):487–494. https://doi.org/10.1023/a:1008184403558

    Article  CAS  PubMed  Google Scholar 

  40. Sengupta S, Bandyopadhyay S (2012) De novo design of potential RecA inhibitors using multi objective optimization. IEEE/ACM Trans Comput Biol Bioinform 9(4):1139–1154. https://doi.org/10.1109/TCBB.2012.35

    Article  CAS  PubMed  Google Scholar 

  41. Pearlman DA, Murcko MA (1996) CONCERTS: dynamic connection of fragments as an approach to de novo ligand design. J Med Chem 39(8):1651–1663. https://doi.org/10.1021/jm950792l

    Article  CAS  PubMed  Google Scholar 

  42. Dean PM, Firth-Clark S, Harris W et al (2006) SkelGen: a general tool for structure-based de novo ligand design. Expert Opin Drug Discov 1(2):179–189. https://doi.org/10.1517/17460441.1.2.179

    Article  CAS  PubMed  Google Scholar 

  43. Hartenfeller M, Proschak E, Schuller A et al (2008) Concept of combinatorial de novo design of drug-like molecules by particle swarm optimization. Chem Biol Drug Des 72(1):16–26. https://doi.org/10.1111/j.1747-0285.2008.00672.x

    Article  CAS  PubMed  Google Scholar 

  44. Vikhar PA (2016) Evolutionary algorithms: a critical review and its future prospects. In: 2016 international conference on global trends in signal processing, information computing and communication (ICGTSPICC), 22–24 Dec. 2016. pp 261–265. https://doi.org/10.1109/ICGTSPICC.2016.7955308

  45. Bäck T (1996) Evolutionary algorithms in theory and practice: evolution strategies, evolutionary programming, genetic algorithms. Oxford University Press, Oxford

    Google Scholar 

  46. Mitchell M (1998) An introduction to genetic algorithms. MIT Press, Cambridge

    Book  Google Scholar 

  47. Neill MO, Ryan C (2001) Grammatical evolution. IEEE Trans Evol Comput 5(4):349–358. https://doi.org/10.1109/4235.942529

    Article  Google Scholar 

  48. Hansen N, Kern S (2004) Evaluating the CMA evolution strategy on multimodal test functions. In: Yao X, Burke EK, Lozano JA et al (eds) Parallel problem solving from nature—PPSN VIII. Springer, Berlin, pp 282–291

    Chapter  Google Scholar 

  49. Kennedy J, Eberhart R (1995) Particle swarm optimization. In: Proceedings of ICNN'95—international conference on neural networks, 27 Nov.–1 Dec. 1995, vol 1944. pp 1942–1948. https://doi.org/10.1109/ICNN.1995.488968

  50. Oleksii P, Simon J, Panagiotis-Christos K et al (2019) A de novo molecular generation method using latent vector based generative adversarial network. https://doi.org/10.26434/chemrxiv.8299544.v2

  51. Putin E, Asadulaev A, Vanhaelen Q et al (2018) Adversarial threshold neural computer for molecular de novo design. Mol Pharm 15(10):4386–4397. https://doi.org/10.1021/acs.molpharmaceut.7b01137

    Article  CAS  PubMed  Google Scholar 

  52. Blaschke T, Olivecrona M, Engkvist O et al (2018) Application of generative autoencoder in de novo molecular design. Mol Informatics 37(1–2). https://doi.org/10.1002/minf.201700123

  53. Yang X, Zhang J, Yoshizoe K et al (2017) ChemTS: an efficient python library for de novo molecular generation. Sci Technol Adv Mater 18(1):972–976. https://doi.org/10.1080/14686996.2017.1401424

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Kang S, Cho K (2019) Conditional molecular design with deep generative models. J Chem Inf Model 59(1):43–52. https://doi.org/10.1021/acs.jcim.8b00263

    Article  CAS  PubMed  Google Scholar 

  55. Griffiths R-R, Hernández-Lobato JM (2017) Constrained Bayesian optimization for automatic chemical design. eprint arXiv:170905501:arXiv:1709.05501

    Google Scholar 

  56. Merk D, Friedrich L, Grisoni F et al (2018) De novo design of bioactive small molecules by artificial intelligence. Mol Informatics 37(1–2). https://doi.org/10.1002/minf.201700153

  57. Sattarov B, Baskin II, Horvath D et al (2019) De novo molecular design by combining deep autoencoder recurrent neural networks with generative topographic mapping. J Chem Inf Model 59(3):1182–1196. https://doi.org/10.1021/acs.jcim.8b00751

    Article  CAS  PubMed  Google Scholar 

  58. Popova M, Isayev O, Tropsha A (2018) Deep reinforcement learning for de novo drug design. Sci Adv 4(7):eaap7885. https://doi.org/10.1126/sciadv.aap7885

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Polykovskiy D, Zhebrak A, Vetrov D et al (2018) Entangled conditional adversarial autoencoder for de novo drug discovery. Mol Pharm 15(10):4398–4405. https://doi.org/10.1021/acs.molpharmaceut.8b00839

    Article  CAS  PubMed  Google Scholar 

  60. Segler MHS, Kogej T, Tyrchan C et al (2018) Generating focused molecule libraries for drug discovery with recurrent neural networks. ACS Cent Sci 4(1):120–131. https://doi.org/10.1021/acscentsci.7b00512

    Article  CAS  PubMed  Google Scholar 

  61. Gupta A, Muller AT, Huisman BJH et al (2018) Generative recurrent networks for de novo drug design. Mol Informatics 37(1–2). https://doi.org/10.1002/minf.201700111

  62. Winter R, Montanari F, Steffen A et al (2019) Efficient multi-objective molecular optimization in a continuous latent space. Chem Sci. https://doi.org/10.1039/C9SC01928F

  63. Bjerrum EJ, Sattarov B (2018) Improving chemical autoencoder latent space and molecular de novo generation diversity with heteroencoders. Biomol Ther 8(4). https://doi.org/10.3390/biom8040131

  64. Lim J, Ryu S, Kim JW et al (2018) Molecular generative model based on conditional variational autoencoder for de novo molecular design. J Chem 10(1):31. https://doi.org/10.1186/s13321-018-0286-7

    Article  CAS  Google Scholar 

  65. Liu X, Ye K, van Vlijmen HWT et al (2019) An exploration strategy improves the diversity of de novo ligands using deep reinforcement learning: a case for the adenosine A2A receptor. J Chem 11(1):35. https://doi.org/10.1186/s13321-019-0355-6

    Article  CAS  Google Scholar 

  66. Olivecrona M, Blaschke T, Engkvist O et al (2017) Molecular de-novo design through deep reinforcement learning. J Chem 9(1):48. https://doi.org/10.1186/s13321-017-0235-x

    Article  Google Scholar 

  67. Zhou Z, Kearnes S, Li L et al (2018) Optimization of molecules via deep reinforcement learning. eprint arXiv:181008678:arXiv:1810.08678

    Google Scholar 

  68. Lima Guimaraes G, Sanchez-Lengeling B, Outeiral C et al (2017) Objective-reinforced generative adversarial networks (ORGAN) for sequence generation models. arXiv e-prints:arXiv:1705.10843

    Google Scholar 

  69. Putin E, Asadulaev A, Ivanenkov Y et al (2018) Reinforced adversarial neural computer for de novo molecular design. J Chem Inf Model 58(6):1194–1204. https://doi.org/10.1021/acs.jcim.7b00690

    Article  CAS  PubMed  Google Scholar 

  70. Dai H, Tian Y, Dai B et al (2018) Syntax-directed variational autoencoder for structured data. arXiv e-prints

    Google Scholar 

  71. Kusner MJ, Paige B, Hernández-Lobato JM (2017) Grammar variational autoencoder. eprint arXiv:170301925:arXiv:1703.01925

    Google Scholar 

  72. Skalic M, Jimenez J, Sabbadin D et al (2019) Shape-based generative modeling for de novo drug design. J Chem Inf Model 59(3):1205–1214. https://doi.org/10.1021/acs.jcim.8b00706

    Article  CAS  PubMed  Google Scholar 

  73. Aumentado-Armstrong T (2018) Latent molecular optimization for targeted therapeutic design. eprint arXiv:180902032:arXiv:1809.02032

    Google Scholar 

  74. Simonovsky M, Komodakis N (2018) GraphVAE: towards generation of small graphs using variational autoencoders. eprint arXiv:180203480:arXiv:1802.03480

    Google Scholar 

  75. Liu Q, Allamanis M, Brockschmidt M et al (2018) Constrained graph variational autoencoders for molecule design. eprint arXiv:180509076:arXiv:1805.09076

    Google Scholar 

  76. You J, Liu B, Ying R et al (2018) Graph convolutional policy network for goal-directed molecular graph generation. eprint arXiv:180602473:arXiv:1806.02473

    Google Scholar 

  77. Jin W, Barzilay R, Jaakkola T (2018) Junction tree variational autoencoder for molecular graph generation. eprint arXiv:180204364:arXiv:1802.04364

    Google Scholar 

  78. Popova M, Shvets M, Oliva J et al (2019) MolecularRNN: generating realistic molecular graphs with optimized properties. eprint arXiv:190513372:arXiv:1905.13372

    Google Scholar 

  79. Bradshaw J, Paige B, Kusner MJ et al (2019) A model to search for synthesizable molecules. eprint arXiv:190605221:arXiv:1906.05221

    Google Scholar 

  80. Stahl N, Falkman G, Karlsson A et al (2019) Deep reinforcement learning for multiparameter optimization in de novo drug design. J Chem Inf Model. https://doi.org/10.1021/acs.jcim.9b00325

  81. Miljanovic M (2012) Comparative analysis of recurrent and finite impulse response neural networks in time series prediction. Ind J Comp Sci Eng 3

    Google Scholar 

  82. Graves A, Liwicki M, Fernández S et al (2009) A novel connectionist system for unconstrained handwriting recognition. IEEE Trans Pattern Anal Mach Intell 31(5):855–868. https://doi.org/10.1109/TPAMI.2008.137

    Article  PubMed  Google Scholar 

  83. Sak H, Senior A, Beaufays F (2014) Long short-term memory recurrent neural network architectures for large scale acoustic modeling. Proceedings of the annual conference of the international speech communication association, INTERSPEECH:338–342

    Google Scholar 

  84. Hochreiter S, Schmidhuber J (1997) Long short-term memory. Neural Comput 9(8):1735–1780

    Article  CAS  PubMed  Google Scholar 

  85. Chung J, Gulcehre C, Cho K et al (2014) Empirical evaluation of gated recurrent neural networks on sequence modeling. ArXiv:1412.3555

    Google Scholar 

  86. Sumita M, Yang X, Ishihara S et al (2018) Hunting for organic molecules with artificial intelligence: molecules optimized for desired excitation energies. ACS Cent Sci 4(9):1126–1133. https://doi.org/10.1021/acscentsci.8b00213

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Arus-Pous J, Blaschke T, Ulander S et al (2019) Exploring the GDB-13 chemical space using deep generative models. J Chem 11(1):20. https://doi.org/10.1186/s13321-019-0341-z

    Article  Google Scholar 

  88. Kramer MA (1991) Nonlinear principal component analysis using autoassociative neural networks. AICHE J 37(2):233–243. https://doi.org/10.1002/aic.690370209

    Article  CAS  Google Scholar 

  89. Kingma D, Welling M (2014) Auto-encoding variational bayes. arXiv e-prints:arXiv:1312.6114

    Google Scholar 

  90. Doersch C (2016) Tutorial on variational autoencoders. arXiv e-prints:arXiv:1606.05908

    Google Scholar 

  91. Kaelbling LP, Littman ML, Moore AW (1996) Reinforcement learning: a survey. J Artif Int Res 4(1):237–285

    Google Scholar 

  92. Williams RJ (1992) Simple statistical gradient-following algorithms for connectionist reinforcement learning. Mach Learn 8(3):229–256. https://doi.org/10.1007/BF00992696

    Article  Google Scholar 

  93. Arjovsky M, Chintala S, Bottou L (2017) Wasserstein GAN. arXiv e-prints:arXiv:1701.07875

    Google Scholar 

  94. The GAN Zoo. https://github.com/hindupuravinash/the-gan-zoo

  95. De Cao N, Kipf T (2018) MolGAN: an implicit generative model for small molecular graphs. eprint arXiv:180511973:arXiv:1805.11973

    Google Scholar 

  96. Makhzani A, Shlens J, Jaitly N et al (2015) Adversarial autoencoders. arXiv e-prints:arXiv:1511.05644

    Google Scholar 

  97. Gaulton A, Bellis LJ, Bento AP et al (2012) ChEMBL: a large-scale bioactivity database for drug discovery. Nucleic Acids Res 40(Database issue):D1100–D1107. https://doi.org/10.1093/nar/gkr777

    Article  CAS  PubMed  Google Scholar 

  98. Mendez D, Gaulton A, Bento AP et al (2019) ChEMBL: towards direct deposition of bioassay data. Nucleic Acids Res 47(D1):D930–D940. https://doi.org/10.1093/nar/gky1075

    Article  CAS  PubMed  Google Scholar 

  99. Wang Y, Xiao J, Suzek TO et al (2009) PubChem: a public information system for analyzing bioactivities of small molecules. Nucleic Acid Res 37(Web Server issue):W623–W633. https://doi.org/10.1093/nar/gkp456

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Sterling T, Irwin JJ (2015) ZINC 15—ligand discovery for everyone. J Chem Inf Model 55(11):2324–2337. https://doi.org/10.1021/acs.jcim.5b00559

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Wishart DS, Feunang YD, Guo AC et al (2018) DrugBank 5.0: a major update to the DrugBank database for 2018. Nucleic Acids Res 46(D1):D1074–D1082. https://doi.org/10.1093/nar/gkx1037

    Article  CAS  PubMed  Google Scholar 

  102. Wishart DS, Knox C, Guo AC et al (2008) DrugBank: a knowledgebase for drugs, drug actions and drug targets. Nucleic Acids Res 36(Database issue):D901–D906. https://doi.org/10.1093/nar/gkm958

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

X.L. thanks the Chinese Scholarship Council (CSC) for funding.

Competing interests: The authors declare that they have no competing interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gerard J. P. van Westen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Liu, X., IJzerman, A.P., van Westen, G.J.P. (2021). Computational Approaches for De Novo Drug Design: Past, Present, and Future. In: Cartwright, H. (eds) Artificial Neural Networks. Methods in Molecular Biology, vol 2190. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0826-5_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0826-5_6

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0825-8

  • Online ISBN: 978-1-0716-0826-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics