Abstract
We revisit the fragment-based docking and design of single-stranded RNA aptamers (ssRNAs), consisting of k nucleotides, onto a rigid protein. Fragments, representing short sequences of (modified) nucleotides, are individually docked as poses onto the protein surface using a force field. Compatible poses are then assembled while optimizing for an additive notion of energy, to obtain stable conformations that can either be constrained to represent an input ssRNA sequence (docking) or left unconstrained (design). However, a brute-force enumeration of clash-free conformations quickly becomes prohibitive due to their superexponential (\(\varTheta (n^k)\) worst-case) combinatorial explosion, hindering the potential of fragment-based methods towards docking and design.
In this work, we adapt the color-coding technique, introduced by Alon, Yuster and Zwick, to optimize over self-avoiding fragment assemblies in time/space linear on n the number of poses, and in time only exponential on k the number of fragments. The dynamic programming algorithm at the core of our method is surprisingly simple, and can be extended to produce suboptimal candidates, or modified to perform Boltzmann sampling of candidates assemblies. Using a rejection principle, and further optimized by a clique decomposition of clashing poses, these algorithms can be leveraged into efficient algorithms optimizing over clash-free complexes. The resulting sampling procedure can further be adapted into statistically-consistent estimators for any computable feature of interest.
We showcase some of the capabilities of this new framework by reanalyzing a set of 7 documented ssRNA-protein complexes, demonstrating its practical relevance and versatility.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
N. Alon, R. Yuster, and U. Zwick. Color-coding. In Proceedings of the twenty-sixth annual ACM symposium on Theory of computing - STOC ’94. ACM Press, 1994. https://doi.org/10.1145/195058.195179
N. Alon, R. Yuster, and U. Zwick. Color-coding. J. ACM, 42(4):844-856, jul 1995. ISSN 0004-5411. https://doi.org/10.1145/210332.210337. URL https://doi.org/10.1145/210332.210337
N. Alon, P. Dao, I. Hajirasouliha, et al. Biomolecular network motif counting and discovery by color coding. Bioinformatics, 24(13):i241–i249, jun 2008. https://doi.org/10.1093/bioinformatics/btn163
Bollag, G., Tsai, J., Zhang, J., et al.: Vemurafenib: the first drug approved for BRAF-mutant cancer. Nat. Rev. Drug Discovery 11(11), 873–886 (2012). https://doi.org/10.1038/nrd3847
N. Chevrollier. Développement et application d’une approche de docking par fragments pour modéliser les interactions entre protéines et ARN simple-brin. Theses, Université Paris-Saclay, May 2019. URL https://tel.archives-ouvertes.fr/tel-02436914
de Beauchene, I.C., de Vries, S.J., Zacharias, M.: Fragment-based modelling of single stranded RNA bound to RNA recognition motif containing proteins. Nucleic Acids Res. 44(10), 4565–4580 (2016). https://doi.org/10.1093/nar/gkw328
S. J. de Vries, C. E. Schindler, I. C. de Beauchêne, and M. Zacharias. A web interface for easy flexible protein-protein docking with attract. Biophysical Journal, 108(3):462–465, 2015. ISSN 0006-3495. https://doi.org/10.1016/j.bpj.2014.12.015. URL https://www.sciencedirect.com/science/article/pii/S0006349514047602
B. Dost, T. Shlomi, N. Gupta, et al. QNet: A tool for querying protein interaction networks. Journal of Computational Biology, 15(7):913–925, sep 2008. https://doi.org/10.1089/cmb.2007.0172
González-Alemán, R., Chevrollier, N., Simoes, M., et al.: MCSS-based predictions of binding mode and selectivity of nucleotide ligands. J. Chem. Theory Comput. 17(4), 2599–2618 (2021). https://doi.org/10.1021/acs.jctc.0c01339
R. González-Alemán, L. Montero-Cabrera, and F. Leclerc. NUCLEAR: a NUCLeotide AssembleR. https://github.com/rglez/nuclear, 2023
Hall, D., Li, S., Yamashita, K., et al.: RNA-LIM: A novel procedure for analyzing protein/single-stranded RNA propensity data with concomitant estimation of interface structure. Anal. Biochem. 472, 52–61 (2015). https://doi.org/10.1016/j.ab.2014.11.004
Itai, A., Papadimitriou, C.H., Szwarcfiter, J.L.: Hamilton paths in grid graphs. SIAM J. Comput. 11(4), 676–686 (1982). https://doi.org/10.1137/0211056
Kappel, K., Das, R.: Sampling native-like structures of RNA-protein complexes through rosetta folding and docking. Structure 27(1), 140-151.e5 (2019). https://doi.org/10.1016/j.str.2018.10.001
Kirsch, P., Hartman, A.M., Hirsch, A.K.H., Empting, M.: Concepts and core principles of fragment-based drug design. Molecules 24(23), 4309 (2019). https://doi.org/10.3390/molecules24234309
D. Marx. Parameterized complexity of independence and domination on geometric graphs. In H. L. Bodlaender and M. A. Langston, editors, Parameterized and Exact Computation, pages 154–165, Berlin, Heidelberg, 2006. Springer Berlin Heidelberg. ISBN 978-3-540-39101-2
A. Miranker and M. Karplus. Functionality maps of binding sites: A multiple copy simultaneous search method. Proteins: Structure, Function, and Genetics, 11(1):29–34, sep 1991. https://doi.org/10.1002/prot.340110104
A. Moniot, Y. Guermeur, S. J. de Vries, and I. Chauvot de Beauchene. ProtNAff: protein-bound Nucleic Acid filters and fragment libraries. Bioinformatics, 38(16):3911–3917, 07 2022. ISSN 1367-4803. https://doi.org/10.1093/bioinformatics/btac430. URL https://doi.org/10.1093/bioinformatics/btac430
M. Naor, L. Schulman, and A. Srinivasan. Splitters and near-optimal derandomization. In Proceedings of IEEE 36th Annual Foundations of Computer Science. IEEE Comput. Soc. Press, Oct. 1995. https://doi.org/10.1109/sfcs.1995.492475
T. P. Perera, E. Jovcheva, L. Mevellec, et al. Discovery and pharmacological characterization of JNJ-42756493 (erdafitinib), a functionally selective small-molecule FGFR family inhibitor. Molecular Cancer Therapeutics, 16(6):1010–1020, jun 2017. https://doi.org/10.1158/1535-7163.mct-16-0589
Perzanowska, O., Smietanski, M., Jemielity, J., Kowalska, J.: Chemically modified poly(a) analogs targeting pabp: Structure activity relationship and translation inhibitory properties. Chem. Eur. J. 28(42), e202201115 (2022)
Schmidt, J.P., Siegel, A.: The spatial complexity of oblivious k-probe hash functions. SIAM J. Comput. 19(5), 775–786 (1990)
Schoepfer, J., Jahnke, W., Berellini, G., et al.: Discovery of asciminib (ABL001), an allosteric inhibitor of the tyrosine kinase activity of BCR-ABL1. J. Med. Chem. 61(18), 8120–8135 (2018). https://doi.org/10.1021/acs.jmedchem.8b01040
Schuffenhauer, A., Ruedisser, S., Marzinzik, A., et al.: Library design for fragment based screening. Curr. Top. Med. Chem. 5(8), 751–762 (2005). https://doi.org/10.2174/1568026054637700
T. Shlomi, D. Segal, E. Ruppin, and R. Sharan. QPath: a method for querying pathways in a protein-protein interaction network. BMC Bioinformatics, 7(1), apr 2006. https://doi.org/10.1186/1471-2105-7-199
Souers, A.J., Leverson, J.D., Boghaert, E.R., et al.: ABT-199, a potent and selective BCL-2 inhibitor, achieves antitumor activity while sparing platelets. Nat. Med. 19(2), 202–208 (2013). https://doi.org/10.1038/nm.3048
Tap, W.D., Wainberg, Z.A., Anthony, S.P., et al.: Structure-guided blockade of CSF1r kinase in tenosynovial giant-cell tumor. N. Engl. J. Med. 373(5), 428–437 (2015). https://doi.org/10.1056/nejmoa1411366
Waterman, M.S., Byers, T.H.: A dynamic programming algorithm to find all solutions in a neighborhood of the optimum. Math. Biosci. 77(1–2), 179–188 (1985). https://doi.org/10.1016/0025-5564(85)90096-3
Acknowledgments
This work was supported by a 2020 PhD Grant from the Fondation Vaincre Alzheimer (#FR-19059) and by the PaRNAssus project funded by Agence Nationale de la Recherche (ANR-19-CE45-0023). The authors are greatly indebted to Laurent Bulteau for suggesting well-colored paths as a memory-efficient alternative to colorful paths, and to Sebastian Will for debunking an earlier, but ultimately erroneous, epiphany.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Yacoub, T., González-Alemán, R., Leclerc, F., de Beauchêne, I.C., Ponty, Y. (2024). Color Coding for the Fragment-Based Docking, Design and Equilibrium Statistics of Protein-Binding ssRNAs. In: Ma, J. (eds) Research in Computational Molecular Biology. RECOMB 2024. Lecture Notes in Computer Science, vol 14758. Springer, Cham. https://doi.org/10.1007/978-1-0716-3989-4_10
Download citation
DOI: https://doi.org/10.1007/978-1-0716-3989-4_10
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-1-0716-3988-7
Online ISBN: 978-1-0716-3989-4
eBook Packages: Computer ScienceComputer Science (R0)