Skip to main content

regLM: Designing Realistic Regulatory DNA with Autoregressive Language Models

  • Conference paper
  • First Online:
Research in Computational Molecular Biology (RECOMB 2024)

Abstract

We present regLM, a framework to design synthetic CREs with desired properties, such as high, low or cell type-specific activity, using autoregressive language models in conjunction with supervised sequence-to-function models. Using regLM, we designed synthetic yeast promoters of defined strength, as well as cell type-specific human enhancers. We show that the synthetic CREs generated by regLM contain biological features similar to experimentally validated CREs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. de Boer, C.G., Vaishnav, E.D., Sadeh, R., Abeyta, E.L., Friedman, N., Regev, A.: Deciphering eukaryotic gene-regulatory logic with 100 million random promoters. Nat. Biotechnol. 38(1), 56–65 (2020)

    Article  Google Scholar 

  2. Brown, T., et al.: Language models are few-shot learners. Adv. Neural. Inf. Process. Syst. 33, 1877–1901 (2020)

    Google Scholar 

  3. Fornes, O., et al.: Ontarget: in silico design of minipromoters for targeted delivery of expression. Nucleic Acids Res. gkad375 (2023)

    Google Scholar 

  4. Gosai, S.J., et al.: Machine-guided design of synthetic cell type-specific cis -regulatory elements. bioRxiv (2023)

    Google Scholar 

  5. Linder, J., Seelig, G.: Fast activation maximization for molecular sequence design. BMC Bioinform. 22(1), 510 (2021)

    Article  Google Scholar 

  6. Nguyen, E., et al.: HyenaDNA: long-range genomic sequence modeling at single nucleotide resolution. arXiv (2023)

    Google Scholar 

  7. Schreiber, J., Lu, Y.Y.: Ledidi: designing genomic edits that induce functional activity (2020)

    Google Scholar 

  8. Taskiran, I.I., Spanier, K.I., Christiaens, V., Mauduit, D., Aerts, S.: Cell type directed design of synthetic enhancers (2022)

    Google Scholar 

  9. Vaishnav, E.D., et al.: The evolution, evolvability and engineering of gene regulatory DNA. Nature 603(7901), 455–463 (2022)

    Article  Google Scholar 

  10. Wittkopp, P.J., Kalay, G.: Cis-regulatory elements: molecular mechanisms and evolutionary processes underlying divergence. Nat. Rev. Genet. 13(1), 59–69 (2012)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Avantika Lal or Gokcen Eraslan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Lal, A., Garfield, D., Biancalani, T., Eraslan, G. (2024). regLM: Designing Realistic Regulatory DNA with Autoregressive Language Models. In: Ma, J. (eds) Research in Computational Molecular Biology. RECOMB 2024. Lecture Notes in Computer Science, vol 14758. Springer, Cham. https://doi.org/10.1007/978-1-0716-3989-4_24

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3989-4_24

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-1-0716-3988-7

  • Online ISBN: 978-1-0716-3989-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics