Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
References
Angluin, D. (1980). “Inductive Inference of Formal Languages from Positive Data”, Information and Control 45, 117–135.
Angluin, D. and Smith, C.H. (1983). “Inductive Inference: Theory and Methods”, Computing Surveys 15, 237–269.
Baliga, G., Case, J., Merkle, W. and Stephan, F. (2000). “Unlearning Helps”, in Montanari, U., Rolim, J.D.P. and Welzl, E. [35], 844–855.
Blum, L. and Blum, M. (1975). “Toward a Mathematical Theory of Inductive Inference”, Information and Control 28, 125–155.
Carlucci, L., Case, J., Jain, S. and Stephan, F. (forth.). “U-Shaped Learning May Be Necessary”, Journal of Computer and System Sciences.
Carnap, R. (1950). Logical Foundations of Probability, Chicago: University of Chicago Press.
Case, J. and Lynes, C. (1982). “Machine Inductive Inference and Language Identification”, in Nielsen, M. and Schmidt, E.M. [39], 107–115.
Case, J. and Ngo Manguelle, S. (1979). “Refinements of Inductive Inference by Popperian Machines”, Technical Report 152, Buffalo: State University of New York at Buffalo.
Case, J. and Smith, C. (1983). “Comparison of Identification Criteria for Machine Inductive Inference”, Theoretical Computer Science 25, 193–220.
Chomsky, N. (1965). Aspects of the Theory of Syntax, Cambridge (Mass.): MIT Press.
Curd, M. and Cover, J.A. (eds.) (1998). Philosophy of Science: The Central Issues, New York: W.W. Norton.
Feyerabend, P. (1975). Against Method, London: Verso.
Fulk, M., Jain, S. and Osherson, D.N. (1994). “Open Problems in ‘Systems That Learn’”, Journal of Computer and System Sciences 49, 589–604.
Giere, R. (1985) “Philosophy of Science Naturalized”, Philosophy of Science 52, 331–356.
Glymour, C. (1980). Theory and Evidence, Princeton: Princeton University Press.
Gold, E.M. (1967). “Language Identification in the Limit”, Information and Control 10, 447–474.
Goodman, N. (1983). Fact, Fiction, and Forecast, 4th ed., Cambridge (Mass.): Harvard University Press.
Harizanov, V.S. and Stephan, F. (2007). “On the Learnability of Vector Spaces”, Journal of Computer and System Sciences 73, 109–122.
Hull, D., Forbes, M. and Burian, R. (eds.) (1994). Proceedings of the 1994 Biennial Meeting of the Philosophy of Science Association, East Lansing: Philosophy of Science Association.
Hume, D. (1984). An Inquiry Concerning Human Understanding, Hendell, C. (ed.), New York: Bobbs-Merrill.
Jain, S. and Stephan, F. (2003). “Learning by Switching Type of Information”, Information and Computation 185, 89–104.
Jain, S., Osherson, D., Royer, J.S. and Sharma, A. (1999). Systems That Learn: An Introduction to Learning Theory, 2nd ed., Cambridge (Mass.): MIT Press.
Jantke, K.P., Kobayashi, S., Tomita, E. and Yokomori, T. (eds.) (1993). Algorithmic Learning Theory: Proceedings of the 4th International Workshop, Lecture Notes in Computer Science 744, Berlin: Springer-Verlag.
Kelly, K.T. (1996). The Logic of Reliable Inquiry, Oxford: Oxford University Press.
Kelly, K.T. (2000). “The Logic of Success”, The British Journal for the Philosophy of Science, Special Millennium Issue 51, 639–666.
Kelly, K.T. (2004). “Uncomputability: The Problem of Induction Internalized”, Theoretical Computer Science 317, 227–249.
Kelly, K. and Juhl, C. (1994). “Realism, Convergence, and Additivity”, in Hull, D., Forbes, M. and Burian, R. [19], 181–190.
Lakatos, I. (1976). Proofs and Refutations, Cambridge: Cambridge University Press.
Lakatos, I. (1998). “Science or Pseudo-Science”, in Curd, M. and Cover, J.A [11], 20–26.
Laudan, L. (1980). “Why Was the Logic of Discovery Abandoned?”, in Nickles, T. [38], 173–183.
Martin, E. and Osherson, D. (1998). Elements of Scientific Inquiry, Cambridge (Mass.): MIT Press.
Merkle, W. and Stephan, F. (2003). “Refuting Learning Revisited”, Theoretical Computer Science 298, 145–177.
Minicozzi, E. (1976). “Some Natural Properties of Strong-Identification in Inductive Inference”, Theoretical Computer Science 2, 345–360.
Mitchell, T.M. (1997). Machine Learning, New York: McGraw-Hill.
Montanari, U., Rolim, J.D.P. and Welzl, E. (eds.) (2000). Automata, Languages and Programming. Proceedings of the 27th International Colloquium(ICALP 2000), Lecture Notes in Computer Science 1853, Berlin: Springer-Verlag.
Mostowski, M. (2001). “On Representing Concepts in Finite Models”, Mathematical Logic Quarterly 47, 513–523.
Mukouchi, Y. and Arikawa, S. (1993). “Inductive Inference Machines That Can Refute Hypothesis Spaces”, in Jantke, K.P., Kobayashi, S., Tomita, E. and Yokomori, T. [23], 123–136.
Nickles, T. (ed.) (1980). Scientific Discovery, Logic, and Rationality, Dordrectht: Reidel.
Nielsen, M. and Schmidt, E.M. (eds.) (1982). Automata, Languages and Programming: Proceedings of the 9th International Colloquium, Lecture Notes in Computer Science 140, Berlin: Springer-Verlag.
Odifreddi, P. (1989). Classical Recursion Theory, Amsterdam: North-Holland.
Osherson, D.N., Stob, M. and Weinstein, S. (1986). Systems That Learn: An Introduction to Learning Theory for Cognitive and Computer Scientists, Cambridge (Mass.): MIT Press.
Osherson, D.N. and Weinstein, S. (1982). “Criteria of Language Learning”, Information and Control 52, 123–138.
Popper, K. (1963). Conjectures and Refutations: The Growth of Scientific Knowledge, London: Routledge.
Putnam, H. (1963). “‘Degree of Confirmation’ and Inductive Logic”, in Putnam, H. [47], 270–292.
Putnam, H. (1965). “Trial and Error Predicates and the Solution to the Problem of Mostowski”, Journal of Symbolic Logic 30, 49–57.
Putnam, H. (1975). “Probability and Confirmation”, in Putnam, H. [47], 293–304.
Putnam, H. (1975). Mathematics, Matter, and Method, Cambridge: Cambridge University Press.
Schäfer-Richter, G. (1984). Über Eingabeabhängigkeit und Komplexität von Inferenz-strategien, Aachen, Germany: PhD Dissertation, Rheinisch-Westfälische Techniche Hochschule.
Sharma, A. (1998). “A Note on Batch and Incremental Learnability”, Journal of Computer and System Sciences 56, 272–276.
Soare, R.I. (1987). Recursively Enumerable Sets and Degrees. A Study of Computable Functions and Computably Generated Sets, Berlin: Springer-Verlag.
Stephan, F. and Ventsov, Yu. (2001). “Learning Algebraic Structures from Text”, Theoretical Computer Science 268, 221–273.
Van Fraassen, B. (1981). The Scientific Image, Oxford: Clarendon Press.
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2007 Springer
About this chapter
Cite this chapter
Harizanov, V.S., Goethe, N.B., Friend, M. (2007). Introduction to the Philosophy and Mathematics of Algorithmic Learning Theory. In: Friend, M., Goethe, N.B., Harizanov, V.S. (eds) Induction, Algorithmic Learning Theory, and Philosophy. Logic, Epistemology, and the Unity of Science, vol 9. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-6127-1_1
Download citation
DOI: https://doi.org/10.1007/978-1-4020-6127-1_1
Publisher Name: Springer, Dordrecht
Print ISBN: 978-1-4020-6126-4
Online ISBN: 978-1-4020-6127-1
eBook Packages: Humanities, Social Sciences and LawPhilosophy and Religion (R0)