Skip to main content

Blind Source Separation using Space–Time Independent Component Analysis

  • Chapter

Part of the book series: Signals and Communication Technology ((SCT))

We consider the problem of convolutive blind source separation (BSS). This is usually tackled through either multichannel blind deconvolution (MCBD) or using frequency-domain independent component analysis (FD-ICA). Here, instead of using a fixed time or frequency basis to solve the convolutive blind source separation problem we propose learning an adaptive spatial–temporal transform directly from the speech mixture. Most of the learnt space–time basis vectors exhibit properties suggesting that they represent the components of individual sources as they are observed at the microphones. Source separation can then be performed by projection onto the appropriate group of basis vectors.We go on to show that both MCBD and FD-ICA techniques can be considered as particular forms of this general separation method with certain constraints. While our space–time approach involves considerable additional computation it is also enlightening as to the nature of the problem and has the potential for performance benefits in terms of separation and de-noising.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. S.-I. Amari, S. Douglas, A. Cichocki, and H. Yang, “Multichannel blind decon-volution and equalization using the natural gradient,” in Proc. IEEE Workshop on Signal Processing Advances in Wireless Communications, Apr. 1997, pp. 101-104.

    Google Scholar 

  2. K. Torkkola, “Blind separation of convolved sources based on information max-imization,” in Proc. of the IEEE Workshop on Neural Networks for Signal Processing (NNSP), 1996, pp. 423-432.

    Google Scholar 

  3. S. C. Douglas and X. Sun, “Convolutive blind separation of speech mixtures using the natural gradient,” Speech Communication, vol. 39, pp. 65-78, 2003.

    Article  MATH  Google Scholar 

  4. S. Makino, H. Sawada, R. Mukai, and S. Araki, “Blind source separation of con-volutive mixtures of speech in frequency domain,” IEICE Trans. Fundamentals vol. E88, pp. 1640-1655, 2005.

    Article  Google Scholar 

  5. S. Adballah and M. Plumbley, “Application of geometric dependency analysis to the separation of convolved mixtures,” in Proc. ICA 2004 (LNCS 3195), Sept. 2004, pp. 540-547.

    Google Scholar 

  6. M. G. Jafari, S. A. Abdallah, M. D. Plumbley, and M. E. Davies, “Sparse coding for convolutive blind audio separation,” in Proc. ICA 2006 (LNCS 3889), Mar. 2006, pp. 132-139.

    Google Scholar 

  7. N. Mitianoudis and M. Davies, “Audio source separation of convolutive mix-tures,” IEEE Trans. Audio and Speech Processing, vol. 11, pp. 489-497, 2003.

    Article  Google Scholar 

  8. R. H. Lambert, Multichannel Blind Deconvolution: FIR Matrix Algebra and Separation of Multipath Mixtures, Ph.D. dissertation, University of Southern California, Los Angeles, CA., 1996.

    Google Scholar 

  9. P. Smaragdis, “Blind separation of convolved mixtures in the frequency do-main,” Neurocomputing, vol. 22, pp. 21-34, 1998.

    Article  MATH  Google Scholar 

  10. J.F. Cardoso, “Blind signal separation: statistical principles,” Proceedings of the IEEE, vol. 86, no. 10, pp. 2009-2025, 1998.

    Article  Google Scholar 

  11. S. Araki, S. Makino, R. Aichner, T. Nishikawa, and H. Saruwatari, “Subband based blind source separation with appropriate processing for each frequency band,” in Proc. ICA 2003, Apr. 2003, pp. 499-504.

    Google Scholar 

  12. J.-F. Cardoso and B. Laheld, “Equivariant adaptive source separation,” IEEE Trans. Signal Processing, vol. 44, pp. 3017-3030, 1996.

    Article  Google Scholar 

  13. S. Amari and A. Cichocki, “Adaptive blind signal processing - neural network approaches,” Proceedings of the IEEE, vol. 86, no. 10, pp. 2026-2048, 1998.

    Article  Google Scholar 

  14. A. Hyvärinen, “Fast and robust fixed-point algorithm for independent com-ponent analysis,” IEEE Trans. Neural Networks, vol. 10, no. 3, pp. 626-634, 1999.

    Article  Google Scholar 

  15. S. Ikeda and N. Murata, “A method of ICA in time-frequency domain,” in Proc. ICA99, Jan. 1999, pp. 365-371.

    Google Scholar 

  16. M. E. Davies, “Audio source separation,” in Mathematics of Signal Process-ing V, Eds. J. G. McWhirter and I. K. Proudler, Oxford University Press, 2002, pp. 57-68.

    Google Scholar 

  17. I. Lee, T. Kim, and T.-W. Lee, “Complex FastIVA: A robust maximum likeli-hood approach of MICA for convolutive BSS”, in Proc. ICA 2006 (LNCS 3889), Mar. 2006, pp. 625-632.

    Google Scholar 

  18. S. Araki, S. Makino, R. Mukai, Y. Hinamoto, T. Nishikawa, and H. Saruwatari, “Equivalence between frequency domain blind source separation and fre-quency domain adaptive beamforming,” in Proc. ICASSP 2002, May 2002, pp. 1785-1788.

    Google Scholar 

  19. S. Kurita, H. Saruwatari, S. Kajita K. Takeda, and F. Itakura, “Evaluation of blind signal separation method using directivity pattern under reverberant conditions,” in Proc. ICASSP 2000, June 2000, pp. 3140-3143.

    Google Scholar 

  20. H. Saruwatari, S. Kurita, and K. Takeda, “Blind source separation combining frequency-domain ICA and beamforming,” in Proc. ICASSP 2001, May 2001, pp. 2733-2736.

    Google Scholar 

  21. M. Z. Ikram and D. R. Morgan, “A beamforming approach to permutation alignment for multichannel frequency-domain blind speech separation,” in Proc. ICASSP 2002, May 2002, pp. 881-884.

    Google Scholar 

  22. H. Sawada, R. Mukai, S. Araki, and S. Makino, “A robust and precise method for solving the permutation problem of frequency-domain blind source separa-tion,” IEEE Trans. Speech and Audio Processing, vol. 12, pp. 530-538, 2004.

    Article  Google Scholar 

  23. S. C. Douglas and S. Haykin, “Relationships between blind deconvolution and blind source separation,” in Unsupervised Adaptive Filtering, vol. 2, Ed. S. Haykin, John Wiley & Sons, 2002, pp. 113-145.

    Google Scholar 

  24. W. L. Melvin, “A STAP overview,” IEEE A&E Systems Magazine, vol. 19, no. 1, pp. 19-35, 2004.

    Article  MathSciNet  Google Scholar 

  25. J.-F. Cardoso, “Multidimensional independent component analysis,” in Proc. ICASSP’98, May 1998, pp. 1941-1944.

    Google Scholar 

  26. R. M. Gray, “On the asymptotic eigenvalue distribution of Toeplitz matrices,” IEEE Trans. Info. Theory, vol. IT-18, no. 6, pp. 725-730, 1972.

    Article  Google Scholar 

  27. J. J. Shynk, “Frequency-domain and multirate adaptive filtering,” IEEE Signal Processing Magazine, vol. 9, no. 1, pp. 14-37, Jan. 1992.

    Article  Google Scholar 

  28. A. Bell and T. Sejnowski, “Learning the higher-order structure of a natural sound,” Network: Computation in Neural Systems vol. 7, pp. 261-266, 1996.

    Article  MATH  Google Scholar 

  29. A. J. Bell and T. J. Sejnowski, “An information maximization approach to blind separation and blind deconvolution,” Neural Computation, vol. 7, no. 6, pp. 1129-1159, 1995.

    Article  Google Scholar 

  30. B. A. Olshausen and D. J. Field, “Emergence of simple-cell receptive-filed prop-erties by learning a sparse code of natural images,” Nature, vol. 381, pp. 607-609,1996.

    Article  Google Scholar 

  31. S. A. Abdallah and M. D. Plumbley, “If edges are the independent components of natural images, what are the independent components of natural sounds?,” in Proc. ICA 2001, Dec. 2001, pp. 534-539.

    Google Scholar 

  32. M. S. Lewicki, “Efficient coding of natural sounds,” Nature Neuroscience vol. 5, no. 4, pp. 356-363, 2002.

    Article  Google Scholar 

  33. C. Knapp and G. Carter, “The generalized correlation method for estimation of time delay,” IEEE Trans. Acoustic, Speech and Signal Processing, vol. 24, pp. 320-327, 1976.

    Article  Google Scholar 

  34. R. R. Coifman and D. L. Donoho, “Translation-invariant de-noising,” in Wavelets and Statistics, vol. 103, Springer Lecture Notes in Statistics, Eds. A. Antoniadis and G. Oppenheim, Springer-Verlag: New York, 1995, pp. 126-150.

    Google Scholar 

  35. S. McGovern, “A model for room acoustics,” Available at http://2pi.us/rir.html (2003).

  36. N. Mitianoudis and M. Davies, “Permutation alignment for frequency domain ICA using subspace beamforming methods,” in Proc. ICA 2004 (LNCS 3195), Sept. 2004, pp. 669-676.

    Google Scholar 

  37. E. Vincent, R. Gribonval, and C. Févotte, “Performance measurement in blind audio source separation,” IEEE Trans. Audio, Speech and Language Processing vol. 14, no. 4, pp. 1462-1469, 2006.

    Article  Google Scholar 

  38. M. Unser, “On the approximation of the discrete Karhunen-Loeve transform for stationary processes,” Signal Processing, vol. 7, pp 231-249, 1984.

    Article  MathSciNet  Google Scholar 

  39. B. D. Van Veen and K. M. Buckley, “Beamforming: a versatile approach to spatial filtering,” IEEE ASSP Magazine, vol. 5, no. 2, pp. 2-24, Apr. 1988.

    Article  Google Scholar 

  40. G. J. Brown, Computational Auditory Scene Analysis: a Representational Approach, Ph.D. dissertation, Computer Science Dept., Sheffield Univ, 1992.

    Google Scholar 

  41. S. Mallat, A Wavelet Tour of Signal Processing, Academic Press, 1999.

    Google Scholar 

  42. A. Hyvärinen, “Sparse code shrinkage: Denoising of nongaussian data by maxi-mum likelihood estimation,” Neural Computation, vol. 11, no. 7, pp. 1739-1768, 1999.

    Article  Google Scholar 

  43. A. Jourjine, S. Rickard, and Ö . Yilmaz, “Blind separation of disjoint orthogonal signals: demixing n sources from 2 mixtures,” in Proc. ICASSP 2000, June 2000, pp. 2985-2988.

    Google Scholar 

  44. M. Casey and A. Westner, “Separation of mixed audio sources by independent subspace analysis,” in Proc. ICMC 2000, Aug. 2000, pp. 154-161.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer

About this chapter

Cite this chapter

Davies, M., Jafari, M., Abdallah, S., Vincent, E., Plumbley, M. (2007). Blind Source Separation using Space–Time Independent Component Analysis. In: Makino, S., Sawada, H., Lee, TW. (eds) Blind Speech Separation. Signals and Communication Technology. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-6479-1_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4020-6479-1_3

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-6478-4

  • Online ISBN: 978-1-4020-6479-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics