Skip to main content

Topologically Constrained Isometric Embedding

  • Chapter
Book cover Human Motion

Part of the book series: Computational Imaging and Vision ((CIVI,volume 36))

Presented is an algorithm for nonlinear dimensionality reduction that uses both local(short) and global(long) distances in order to learn the intrinsic geometry of manifolds with complicated topology. Since our algorithm matches nonlocal structures, it is robust even to strong noise. We show experimental results on both synthetic and real data demonstrating the advantages of our approach over stateof- the-art manifold learning methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Belkin M. and Niyogi P. Laplacian eigenmaps and spectral techniques for em-bedding and clustering. In T. G. Dietterich, S. Becker, and Z. Ghahramani, editors, Advances in Neural Information Processing Systems, volume 14, pp. 585-591, MIT Press, Cambridge, MA, 2002.

    Google Scholar 

  2. Ben-Tal A. and Nemirovski A. S. Lectures on Modern Convex Optimization: Analysis, Algorithms, and Engineering Applications. Society for Industrial and Applied Mathematics, Philadelphia, PA, 2001.

    MATH  Google Scholar 

  3. Bernstein M., de Silva V., Langford J. C., and Tenenbaum J. B. Graph ap-proximations to geodesics on embedded manifolds. Technical report, Stanford University, January 2001.

    Google Scholar 

  4. Blake A. and Zisserman A. Visual Reconstruction. The MIT Press, London, 1987.

    Google Scholar 

  5. Borg I. and Groenen P. Modern Multidimensional Scaling: Theory and Appli-cations. Springer, New York, 1997. xviii+471 pp.

    Google Scholar 

  6. Boult T. E. and Kender J. R. Visual surface reconstruction using sparse depth data. In Computer Vision and Pattern Recognition, volume 86, pp. 68-76, 1986.

    Google Scholar 

  7. Bronstein A. M., Bronstein M. M., and Kimmel R. Three-dimensional face recognition. International Journal of Computer Vision (IJCV), 64(1):5-30, August 2005.

    Article  Google Scholar 

  8. Bronstein A. M., Bronstein M. M., and Kimmel R. Generalized multidimen-sional scaling: a framework for isometry-invariant partial surface matching. Pro-ceedings of the National Academy of Sciences, 103(5):1168-1172, January 2006.

    Article  MATH  MathSciNet  Google Scholar 

  9. Bronstein M. M., Bronstein A. M., and Kimmel R. Multigrid multidimensional scaling. Numerical Linear Algebra with Applications (NLAA), 13(2-3):149-171, March-April 2006.

    Article  MATH  MathSciNet  Google Scholar 

  10. Cabay S. and Jackson L. Polynomial extrapolation method for finding limits and antilimits of vector sequences. SIAM Journal on Numerical Analysis, 13 (5):734-752, October 1976.

    Article  MATH  MathSciNet  Google Scholar 

  11. Coifman R. R., Lafon S., Lee A. B., Maggioni M., Nadler B., Warner F., and Zucker S. W. Geometric diffusions as a tool for harmonic analysis and structure definition of data. Proceedings of the National Academy of Sciences, 102(21): 7426-7431, May 2005.

    Article  Google Scholar 

  12. Cormen T. H., Leiserson C. E., and Rivest R. L. Introduction to Algorithms. MIT Press and McGraw-Hill, 1990.

    Google Scholar 

  13. Diaz R. M. and Arencibia A. Q., editors. Coloring of DT-MRI FIber Traces using Laplacian Eigenmaps, Las Palmas de Gran Canaria, Spain, Springer, February 24-28 2003.

    Google Scholar 

  14. Dijkstra E. W. A note on two problems in connection with graphs. Numerische Mathematik, 1:269-271, 1959.

    Article  MATH  MathSciNet  Google Scholar 

  15. Duda R. O., Hart P. E., and Stork D. G. Pattern Classification and Scene Analysis. Wiley-Interscience, 2nd edn, 2000.

    Google Scholar 

  16. Eddy R. P. Extrapolationg to the limit of a vector sequence. In P. C. Wang, edi-tor, Information Linkage Between Applied Mathematics and Industry, Academic Press, pp. 387-396. 1979.

    Google Scholar 

  17. Eldar Y., Lindenbaum M., Porat M., and Zeevi Y. The farthest point strategy for progressive image sampling. IEEE Transactions on Image Processing, 6(9): 1305-1315, September 1997.

    Article  Google Scholar 

  18. Freedman D. Efficient simplicial reconstructions of manifolds from their sam-ples. IEEE Transactions on Pattern Analysis and Machine Intelligence, 24(10): 1349-1357, October 2002.

    Article  Google Scholar 

  19. Grimes C. and Donoho D. L. When does isomap recover the natural parameter-ization of families of articulates images? Technical Report 2002-27, Department of Statistics, Stanford University, Stanford, CA 94305-4065, 2002.

    Google Scholar 

  20. Grimes C. and Donoho D. L. Hessian eigenmaps: Locally linear embedding techniques for high-dimensional data. Proceedings of the National Academy of Sciences, 100(10):5591-5596, May 2003.

    Article  MATH  MathSciNet  Google Scholar 

  21. Guy G. and Medioni G. Inference of surfaces, 3D curves and junctions from sparse, noisy, 3D data. IEEE Transactions on Pattern Analysis and Machine Intelligence, 19(11):1265-1277, November 1997.

    Article  Google Scholar 

  22. Hu N., Huang W., and Ranganath S. Robust attentive behavior detection by non-linear head pose embedding and estimation. In A. Leonardis, H. Bischof and A. Pinz, editors, Proceedings of the 9th European Conference Computer Vision (ECCV), volume 3953, pp. 356-367, Graz, Austria, Springer. May 2006.

    Google Scholar 

  23. Kearsley A., Tapia R., and Trosset M. W. The solution of the metric stress and sstress problems in multidimensional scaling using newton’s method. Computa-tional Statistics, 13(3):369-396, 1998.

    MATH  Google Scholar 

  24. Keller Y., Lafon S., and Krauthammer M. Protein cluster analysis via directed diffusion. In The fifth Georgia Tech International Conference on Bioinformatics, November 2005.

    Google Scholar 

  25. Kimmel R. and Sethian J. A. Computing geodesic paths on manifolds. Proceed- ings of the National Academy of Sciences, 95(15):8431-8435, July 1998.

    Article  MATH  MathSciNet  Google Scholar 

  26. Lafon S. Diffusion Maps and Geometric Harmonics. Ph.D. dissertation, Grad-uate School of Yale University, May 2004.

    Google Scholar 

  27. Lafon S. and Lee A. B. Diffusion maps and coarse-graining: A unified framework for dimensionality reduction, graph partitioning and data set parameterization. IEEE transactions on Pattern Analysis and Machine Intelligence, 2006. To Appear.

    Google Scholar 

  28. Mordohai P. and Medioni G. Unsupervised dimensionality estimation and man- ifold learning in high-dimensional spaces by tensor voting. In Proceedings of International Joint Conference on Artificial Intelligence, pp. 798-803, 2005.

    Google Scholar 

  29. Pless R. Using Isomap to explore video sequences. In Proceedings of the 9th International Conference on Computer Vision, pp. 1433-1440, Nice, France, October 2003.

    Google Scholar 

  30. Roweis S. T. and Saul L. K. Nonlinear dimensionality reduction by locally linear embedding. Science, 290:2323-2326, 2000.

    Article  Google Scholar 

  31. Schwartz E. L., Shaw A., and Wolfson E. A numerical solution to the generalized mapmaker’s problem: Flattening nonconvex polyhedral surfaces. IEEE Trans-actions on Pattern Analysis and Machine Intelligence, 11:1005-1008, November 1989.

    Article  Google Scholar 

  32. Sidi A. Efficient implementation of minimal polynomial and reduced rank ex-trapolation methods. Journal of Computational and Applied Mathematics, 36 (3):305-337, 1991.

    Article  MATH  MathSciNet  Google Scholar 

  33. Smith D. A., Ford W. F., and Sidi A. Extrapolation methods for vector se-quences. SIAM Review, 29(2):199-233, June 1987.

    Article  MATH  MathSciNet  Google Scholar 

  34. Tenenbaum J. B., de Silva V., and Langford J. C. A global geometric frame-work for nonlinear dimensionality reduction. Science, 290(5500):2319-2323, December 2000.

    Article  Google Scholar 

  35. Trosset M. and Mathar R. On the existence of nonglobal minimizers of the stress criterion for metric multidimensional scaling. American Statistical Association: Proceedings Statistical Computing Section, pp. 158-162, November 1997.

    Google Scholar 

  36. Weinberger K. Q., Packer B. D., and Saul L. K. Nonlinear dimensionality reduc-tion by semidefinite programming and kernel matrix factorization. In Proceed-ings of the 10th International Workshop on Artificial Intelligence and Statistics, Barbados, January 2005.

    Google Scholar 

  37. WeinbergerK. Q. and SaulL. K. Unsupervised learning of image manifolds by semidefinite programming. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, vol. 2, pp. 988-995, Washington DC, IEEE Computer Society, 2004.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer

About this chapter

Cite this chapter

Rosman, G., Bronstein, A.M., Bronstein, M.M., Kimmel, R. (2008). Topologically Constrained Isometric Embedding. In: Rosenhahn, B., Klette, R., Metaxas, D. (eds) Human Motion. Computational Imaging and Vision, vol 36. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-6693-1_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4020-6693-1_10

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-6692-4

  • Online ISBN: 978-1-4020-6693-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics