Skip to main content

An Introduction to Interacting Simulated Annealing

  • Chapter
Human Motion

Part of the book series: Computational Imaging and Vision ((CIVI,volume 36))

Human motion capturing can be regarded as an optimization problem where one searches for the pose that minimizes a previously defined error function based on some image features. Most approaches for solving this problem use iterative methods like gradient descent approaches. They work quite well as long as they do not get distracted by local optima. We introduce a novel approach for global optimization that is suitable for the tasks as they occur during human motion capturing. We call the method interacting simulated annealing since it is based on an interacting particle system that converges to the global optimum similar to simulated annealing. We provide a detailed mathematical discussion that includes convergence results and annealing properties. Moreover, we give two examples that demonstrate possible applications of the algorithm, namely a global optimization problem and a multi-view human motion capturing task including segmentation, prediction, and prior knowledge. A quantative error analysis also indicates the performance and the robustness of the interacting simulated annealing algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ackley D. A Connectionist Machine for Genetic Hillclimbing. Kluwer, Boston, 1987.

    Google Scholar 

  2. Bäck T. and Schwefel H.-P. An overview of evolutionary algorithms for para-meter optimization. Evolutionary Computation, 1:1-24, 1993.

    Article  Google Scholar 

  3. Bauer H. Probability Theory. de Gruyter, Baton Rouge, 1996.

    MATH  Google Scholar 

  4. Besl P. and McKay N. A Method for registration of 3-D Shapes. IEEE Trans-actions on Pattern Analysis and Machine Intelligence, 14(2):239-256, 1992.

    Article  Google Scholar 

  5. Brox T., Rosenhahn B., Cremers D., and Seidel H.-P. High accuracy optical flow serves 3-D pose tracking: exploiting contour and flow based constraints. In A. Leonardis, H. Bischof, and A. Pinz, editors, European Conference on Computer Vision (ECCV), LNCS 3952, pp. 98-111. Springer, 2006.

    Google Scholar 

  6. Brox T., Rosenhahn B., Kersting U., and Cremers D., Nonparametric density estimation for human pose tracking. In Pattern Recognition (DAGM). LNCS 4174, pp. 546-555. Springer, 2006.

    Google Scholar 

  7. Bregler C., Malik J., and Pullen K. Twist based acquisition and tracking of animal and human kinematics. International Journal of Computer Vision, 56:179-194, 2004.

    Article  Google Scholar 

  8. Brox T., Rosenhahn B., and Weickert J. Three-dimensional shape knowledge for joint image segmentation and pose estimation. In W. Kropatsch, R. Sablatnig, A. Hanbury, editors, Pattern Recognition (DAGM), LNCS 3663, pp. 109-116. Springer, 2005.

    Google Scholar 

  9. Deutscher J. and Reid I. Articulated body motion capture by stochastic search. International Journal of Computer Vision, 61(2):185-205, 2005.

    Article  Google Scholar 

  10. Doucet A., deFreitas N., and Gordon N., editors. Sequential Monte Carlo Meth-ods in Practice. Statistics for Engineering and Information Science. Springer, New York, 2001.

    Google Scholar 

  11. Gall J., Potthoff J., Schnoerr C., Rosenhahn B., and Seidel H.-P. Interacting and annealing particle systems - mathematics and recipes. Journal of Mathematical Imaging and Vision, 2007, To appear.

    Google Scholar 

  12. Gall J., Rosenhahn B., Brox T., and Seidel H.-P. Learning for multi-view 3D tracking in the context of particle filters. In International Symposium on Visual Computing (ISVC), LNCS 4292, pp. 59-69. Springer, 2006.

    Google Scholar 

  13. Gall J., Rosenhahn B., and Seidel H.-P. Robust pose estimation with 3D tex-tured models. In IEEE Pacific-Rim Symposium on Image and Video Technology (PSIVT), LNCS 4319, pp. 84-95. Springer, 2006.

    Google Scholar 

  14. Geman S. and Geman D. Stochastic relaxation, Gibbs distributions and the Bayesian restoration of images. IEEE Transactions on Pattern Analysis and Machine Intelligence, 6(6):721-741, 1984.

    Article  MATH  Google Scholar 

  15. Gidas B. Topics in Contemporary Probability and Its Applications, Chapter 7: Metropolis-type Monte Carlo simulation algorithms and simulated annealing, pp. 159-232. Probability and Stochastics Series. CRC Press, Boca Raton, 1995.

    Google Scholar 

  16. Goldstein H. Classical Mechanics. Addison-Wesley, Reading, MA, second edi-tion, 1980.

    MATH  Google Scholar 

  17. Grest D., Herzog D., and Koch R. Human Model Fitting from Monocular Posture Images. In G. Greiner, J. Hornegger, H. Niemann, and M. Stamminger, editors, Vision, modelling and Visualization. Akademische Verlagsgesellschaft Aka, 2005.

    Google Scholar 

  18. Kirkpatrick S., Gelatt C. Jr. and Vecchi M. Optimization by simulated anneal- ing. Science, 220(4598):671-680, 1983.

    Article  MathSciNet  Google Scholar 

  19. DelMoral P. Feynman-Kac Formulae. Genealogical and Interacting Particle Systems with Applications. Probability and its Applications. Springer, New York, 2004.

    Google Scholar 

  20. Murray R.M., Li Z., and Sastry S.S. Mathematical Introduction to Robotic Manipulation. CRC Press, Baton Rouge, 1994.

    MATH  Google Scholar 

  21. Parzen E. On estimation of a probability density function and mode. Annals of Mathematical Statistics, 33:1065-1076, 1962.

    Article  MATH  MathSciNet  Google Scholar 

  22. Pennec X. and Ayache N. Uniform distribution, distance and expectation prob-lems for geometric features processing. Journal of Mathematical Imaging and Vision, 9(1):49-67, 1998.

    Article  MATH  MathSciNet  Google Scholar 

  23. Pennec X. Computing the mean of geometric features: Application to the mean rotation. Rapport de Recherche RR-3371, INRIA, Sophia Antipolis, France, March 1998.

    Google Scholar 

  24. Pennec X. Intrinsic statistics on Riemannian manifolds: basic tools for geometric measurements. Journal of Mathematical Imaging and Vision, 25(1):127-154, 2006.

    Article  MathSciNet  Google Scholar 

  25. Rosenhahn B., Brox T., Cremers D., and Seidel H.-P. A comparison of shape matching methods for contour based pose estimation. In R. Reulke, U. Eckhardt, B. Flach, U. Knauer, and K. Polthier, editors, 11th International Workshop on Combinatorial Image Analysis (IWCIA), LNCS 4040, pp. 263-276. Springer, 2006.

    Google Scholar 

  26. Rosenhahn B., Brox T., Kersting U., Smith A., Gurney J., and Klette R. A sys-tem for marker-less human motion estimation. Künstliche Intelligenz, 1:45-51, 2006.

    Google Scholar 

  27. Rosenhahn B., Brox T., and Weickert J. Three-dimensional shape knowledge for joint image segmentation and pose tracking. In International Journal of Computer Vision, 2006, To appear.

    Google Scholar 

  28. Rosenhahn B., Perwass C., and Sommer G. Pose Estimation of Free-form Con-tours. International Journal of Computer Vision, 62(3):267-289, 2005.

    Article  Google Scholar 

  29. Rosenblatt F. Remarks on some nonparametric estimates of a density function. Annals of Mathematical Statistics, 27(3):832-837, 1956.

    Article  MATH  MathSciNet  Google Scholar 

  30. Szu H. and Hartley R. Fast simulated annealing. Physic Letter A, 122:157-162, 1987.

    Article  Google Scholar 

  31. Theobalt C., Magnor M., Schueler P., and Seidel H.-P. Combining 2D fea-ture tracking and volume reconstruction for online video-based human motion capture. In 10th Pacific Conference on Computer Graphics and Applications, pp. 96-103. IEEE Computer Society, 2002.

    Google Scholar 

  32. Tsallis C. and Stariolo D.A. Generalized simulated annealing. Physica A, 233:395-406, 1996.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer

About this chapter

Cite this chapter

Gall, J., Rosenhahn, B., Seidel, HP. (2008). An Introduction to Interacting Simulated Annealing. In: Rosenhahn, B., Klette, R., Metaxas, D. (eds) Human Motion. Computational Imaging and Vision, vol 36. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-6693-1_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4020-6693-1_13

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-6692-4

  • Online ISBN: 978-1-4020-6693-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics