Skip to main content

All Splitting Logics in the Lattice NExt(KTB)

  • Chapter
Towards Mathematical Philosophy

Part of the book series: Trends in Logic ((TREN,volume 28))

Abstract

It is proved that there are only two logics that split the lattice Next(KTB). The proof is based on the general splitting theorem by Kracht and conducted by a graph theoretic argument.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Blok, W., On the degree of incompleteness in modal logics and the covering relation in the lattice of modal logics, Tech. Rep. 78-07, Department of Mathematics, University of Amsterdam, 1978.

    Google Scholar 

  2. Blok, W., ‘The lattice of modal logics: an algebraic investigation’, Journal of Symbolic Logic, 45: 221–236, 1980.

    Article  MATH  MathSciNet  Google Scholar 

  3. Blok, W., Köhler, P., Pigozzi, D., ‘On the structure of varieties with equationally definable principal congruences II’, Algebra Universalis, 18: 334–379.

    Google Scholar 

  4. Blok, W., Pigozzi, D., ‘On the structure of varieties with equationally definable principal congruences I’, Algebra Universalis, 15: 195–227.

    Google Scholar 

  5. Blok, W., Pigozzi, D., ‘On the structure of varieties with equationally definable principal congruences III’, Algebra Universalis, 32: 545–608.

    Google Scholar 

  6. Blok, W., Pigozzi, D., ‘On the structure of varieties with equationally definable principal congruences IV’, Algebra Universalis, 31: 1–35.

    Google Scholar 

  7. Burris, S.N., Sankappanavar, H.P., A Course in Universal Algebra, Springer Verlag, Berlin, 1981.

    MATH  Google Scholar 

  8. Chagrov, A., Zakharyaschev, M., Modal Logic, Clarendon Press, Oxford.

    Google Scholar 

  9. Day, A., ‘Splitting lattices generate all lattices’, Algebra Universalis, 7: 163–169.

    Google Scholar 

  10. Fine, K., ‘An incomplete logic containing S4’, Theoria, 40: 23–29, 1974.

    Article  MATH  MathSciNet  Google Scholar 

  11. Jankov, V.A., ‘The relationship between deducibility in the intuitionistic propositional calculus and finite implicational structures’, Soviet Mathematics Doklady, 4: 1203–1204.

    Google Scholar 

  12. Kowalski, T., An outline of a topography of tense logics, Ph.D. thesis, Jagiellonian University, Kraków, 1997.

    Google Scholar 

  13. Kowalski, T., Ono, H., ‘Splittings in the variety of residuated lattices’, Algebra Universalis, 44: 283–298.

    Google Scholar 

  14. Kracht, M., ‘Even more about the lattice of tense logics’, Archive of Mathematical Logic, 31: 243–357.

    Google Scholar 

  15. Kracht, M., Tools and Techniques in Modal Logic, Studies in Logics, vol. 42, Elsevier, Amsterdam.

    Google Scholar 

  16. Kracht, M., ‘An almost general splitting theorem for modal logic’, Studia Logica, 49: 455–470, 1990.

    Article  MATH  MathSciNet  Google Scholar 

  17. Makinson, D.C., ‘Some embedding theorems for modal logic’, Notre Dame Journal of Formal Logic, 12: 252–254, 1971.

    Article  MATH  MathSciNet  Google Scholar 

  18. McKenzie, R., ‘Equational bases and non-modular lattice varieties’, Transactions of the American Mathematical Society, 156: 1–43.

    Google Scholar 

  19. Miyazaki, Y., ‘A splitting logic in NEXT(KTB)’, Studia Logica, 85: 399–412, 2007.

    Google Scholar 

  20. Miyazaki, Y., ‘Kripke incomplete logics containing KTB’, Studia Logica, 85: 311–326, 2007.

    Google Scholar 

  21. Rautenberg, W., ‘Splitting lattices of logics’, Archiv für Mathematische Logik, 20: 155–159.

    Google Scholar 

  22. Stevens, M., Kowalski T., Minimal varieties of KTB-algebras, manuscript.

    Google Scholar 

  23. Whitman, Ph.M., ‘Splittings of a lattice’, American Journal of Mathematics, 65: 179–196.

    Google Scholar 

  24. Wolter, F., Lattices of modal logics, Ph.D. thesis, Freie Universität, Berlin, 1993.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tomasz Kowalski .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Kowalski, T., Miyazaki, Y. (2009). All Splitting Logics in the Lattice NExt(KTB). In: Makinson, D., Malinowski, J., Wansing, H. (eds) Towards Mathematical Philosophy. Trends in Logic, vol 28. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-9084-4_4

Download citation

Publish with us

Policies and ethics