Skip to main content

Monotone Relations, Fixed Points and Recursive Definitions

  • Chapter
Towards Mathematical Philosophy

Part of the book series: Trends in Logic ((TREN,volume 28))

  • 1050 Accesses

Abstract

The paper is concerned with reflexive points of relations. The significance of reflexive points in the context of indeterminate recursion principles is shown.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Berman, J., Blok, W., [1989], ‘Generalizations of Tarski’s fixed-point theorem for order varieties of complete meet semilattices’, Order, 5(4): 381–392.

    Article  MATH  MathSciNet  Google Scholar 

  2. Cai, J., Paige, R., [1992], ‘Languages polynomial in the input plus output’, in Second International Conference on Algebraic Methodology and Software Technology (AMAST 91), Springer Verlag, London, pp. 287–300.

    Google Scholar 

  3. Chang, C.C., Keisler, H.J., [1973], Model Theory, North-Holland and American Elsevier, Amsterdam–London–New York.

    MATH  Google Scholar 

  4. Czelakowski, J., [2006], ‘Fixed-points for relations and the back and forth method’, Bulletin of the Section of Logic, 35(2/3): 63–71.

    MATH  MathSciNet  Google Scholar 

  5. Davey, B.A., Priestley, H., [2002] Introduction to Lattices and Order, 2nd ed., Cambridge University Press, Cambridge.

    MATH  Google Scholar 

  6. Desharnais, J., Möller, B., [2005], ‘Least reflexive points of relations’, Higher-Order and Symbolic Computation, 18: 51–77.

    Article  MATH  Google Scholar 

  7. Dugundji, J., Granas, A., [1982], Fixed Point Theory, Monografie Matematyczne, vol. 61, PWN, Warsaw.

    MATH  Google Scholar 

  8. Fujimoto, T., [1984], ‘An extension of Tarski’s fixed point theorem and its application to isotone complementarity problems’, Mathematical Programming, 28: 116–118.

    Article  MATH  MathSciNet  Google Scholar 

  9. Goebel, K., Kirk, W.A., [1990], Topics in Metric Fixed Point Theory, Cambridge University Press, Cambridge.

    MATH  Google Scholar 

  10. Gunter, C.A., Scott, D.S., [1990], ‘Semantic domains’, in Van Leeuwen, J. (Managing Editor), Handbook of Theoretical Computer Science, The MIT Press/Elsevier, Amsterdam, New York-Oxford-Tokyo/Cambridge, Massachusetts, pp. 634–674.

    Google Scholar 

  11. Kirk, W.A., Sims, B. (eds.), [2001], Handbook of Metric Fixed Point Theory, Kluwer, Dordrecht, Boston–London.

    MATH  Google Scholar 

  12. Kleene, S.C., [1952], Introduction to Metamathematics, Van Nostrand.

    Google Scholar 

  13. Kunen, K., [1999], Set Theory. An Introduction to Independence Proofs, Elsevier, Amsterdam–Lausanne–New York.

    Google Scholar 

  14. Markowsky, G., [1976], ‘Chain-complete posets and directed sets with applications’, Algebra Universalis, 6: 53–68.

    Article  MATH  MathSciNet  Google Scholar 

  15. Moschovakis, Y.N., [1994], Notes on Set Theory, Springer-Verlag, New York–Berlin.

    MATH  Google Scholar 

  16. Tarski, A., [1955], ‘A lattice-theoretical fixpoint theorem and its applications’, Pacific Journal of Mathematics, 5: 285–309.

    MATH  MathSciNet  Google Scholar 

  17. Wright, J., Wagner, E., Thatcher, J., [1978], ‘A uniform approach to inductive posets and inductive closure’, Theoretical Computer Science, 7: 57–77.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Janusz Czelakowski .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Czelakowski, J. (2009). Monotone Relations, Fixed Points and Recursive Definitions. In: Makinson, D., Malinowski, J., Wansing, H. (eds) Towards Mathematical Philosophy. Trends in Logic, vol 28. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-9084-4_7

Download citation

Publish with us

Policies and ethics