Skip to main content

Design of Communication Infrastructures for Reconfigurable Systems

  • Chapter
Languages for Embedded Systems and their Applications

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 36))

  • 770 Accesses

Abstract

Dynamic reconfiguration capabilities of FPGA devices are commonly exploited in order to perform changes in a system with respect to computational elements. This work aims at proposing a framework able to exploit different levels of simulations in order to perform a requirements-driven design of the communication infrastructure of a reconfigurable system, so that the overall performances can be improved.

To accomplish this requirements-driven design it is necessary to perform a design space exploration of applications and scenarios in which a particular system can be used. A new scenario-centric approach is proposed in order to identify metrics and requirements needed to apply a communication infrastructure reconfiguration.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. I. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci. A survey on sensor networks. IEEE Communications Magazine, 40(8):102–114, 2002.

    Article  Google Scholar 

  2. AutomotiveDesignLine. http://automotivedesignline.com/.

  3. L. Benini and G. De Micheli. Networks on chips: A new SoC paradigm. Computer, 35(1):70–78, 2002.

    Article  Google Scholar 

  4. J. Chan and S. Parameswaran. Nocgen: a template based reuse methodology for networks on chip architecture. In Proceedings of 17th International Conference on VLSI Design, 717–720, 2004.

    Google Scholar 

  5. M. Coppola, R. Locatelli, G. Maruccia, L. Pieralisi, and A. Scandurra. Spidergon: a novel on-chip communication network. In: SOC 2004: Proceedings of International Symposium on System-on-Chip, Tampere, Finland, page 15, November 2004.

    Google Scholar 

  6. W.J. Dally and B. Towles. Route packets, not wires: on-chip interconnection networks. In DAC ’01: Proceedings of the 38th Conference on Design Automation, pages 684–689. Assoc. Comput. Mach., New York, 2001.

    Chapter  Google Scholar 

  7. EAPR Xilinx. Early Access Partial Reconfiguration Guide. Xilinx Inc., San Jose, 2006.

    Google Scholar 

  8. G. Fen, W. Ning, and W. Qi. Simulation and performance evaluation for network on chip design using opnet. In: TENCON 2007—2007 IEEE Region 10th Conference, pages 1–4, 2007.

    Google Scholar 

  9. J. González Gómez, E. Aguayo, and E. Boemo. Locomotion of a modular worm-like robot using a FPGA-based embedded microblaze soft-processor. In CLAWAR, CSIC, pages 3397–3402, September 2004.

    Google Scholar 

  10. HighPerformanceComputingArchitectures. http://www.hpcwire.com/hpc/1578042.html.

  11. H. Jung, M. Tambe, and S. Kulkarni. A dynamic distributed constraint satisfaction approach to resource allocation. In Principles and Practice of Constraint Programming, pages 324–331, 2001.

    Google Scholar 

  12. H.G. Lee, N. Chang, U.Y. Ogras, and R. Marculescu. On-chip communication architecture exploration: A quantitative evaluation of point-to-point, bus, and network-on-chip approaches. ACM Transactions on Design Automation of Electronic Systems, 12(3):1–20, 2007.

    Article  Google Scholar 

  13. A. Meroni, V. Rana, M. Santambrogio, and D. Sciuto. A requirements-driven reconfigurable SoC communication infrastructure design flow. In 4th IEEE International Symposium on Electronic Design, Test & Applications, DELTA08, 2008.

    Google Scholar 

  14. M. Moadeli, A. Shahrabi, W. Vanderbauwhede, and M. Ould-Khaoua. An analytical performance model for the spidergon NoC. In 21st International Conference on Advanced Information Networking and Applications, AINA ’07, pages 1014–1021, 21–23 May 2007.

    Google Scholar 

  15. F. Moraes. Hermes: an infrastructure for low area overhead packet-switching networks on chip. 2004.

    Google Scholar 

  16. OSCI. SystemC documentation (Last Check March 2008). http://www.systemc.org. Open SystemC Iniative OSCI, 2007.

  17. L. Ost, A. Mello, J. Palma, F. Moraes, and N. Calazans. Maia—a framework for networks on chip generation and verification. In Proceedings of the Design Automation Conference, ASP-DAC 2005, volume 1, pages 49–52, 18–21 January 2005.

    Google Scholar 

  18. P.P. Pande, C. Grecu, M. Jones, A. Ivanov, and R. Saleh. Performance evaluation and design trade-offs for network-on-chip interconnect architectures. IEEE Transactions on Computers, 54(8):1025–1040, 2005.

    Article  Google Scholar 

  19. V. Rana, M.D. Santambrogio, and D. Sciuto. Dynamic reconfigurability in embedded system design. In IEEE International Symposium on Circuits and Systems, pages 2734–2737, May 2007.

    Google Scholar 

  20. F. Su and K. Chakrabarty. Yield enhancement of reconfigurable microfluidics-based biochips using interstitial redundancy. ACM Journal on Emerging Technologies in Computing Systems, 2(2):104–128, 2006.

    Article  Google Scholar 

  21. A. Vargas. Omnet++. http://www.omnetpp.org, 2007.

  22. P.T. Wolkotte, P.K.F. Holzenspies, and G.J.M. Smit. Fast, accurate and detailed NoC simulations. In First International Symposium on Networks-on-Chip, NOCS 2007, pages 323–332, 7–9 May 2007.

    Google Scholar 

  23. Xilinx. Xilinx market solutions. http://www.xilinx.com/esp/.

  24. M. Yokoo, E.H. Durfee, T. Ishida, and K. Kuwabara. Distributed constraint satisfaction for formalizing distributed problem solving. In International Conference on Distributed Computing Systems, pages 614–621, 1992.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francesco Bruschi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Meroni, A., Rana, V., Santambrogio, M.D., Bruschi, F. (2009). Design of Communication Infrastructures for Reconfigurable Systems. In: Radetzki, M. (eds) Languages for Embedded Systems and their Applications. Lecture Notes in Electrical Engineering, vol 36. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-9714-0_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-4020-9714-0_19

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-9713-3

  • Online ISBN: 978-1-4020-9714-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics