Abstract
The previous chapter defined cross-correntropy for the case of a pair of scalar random variables, and presented applications in statistical inference. This chapter extends the definition of correntropy for the case of random (or stochastic) processes, which are index sets of random variables. In statistical signal processing the index set is time; we are interested in random variables that are a function of time and the goal is to quantify their statistical dependencies (although the index set can also be defined over inputs or channels of multivariate random variables). The autocorrelation function, which measures the statistical dependency between random variables at two different times, is conventionally utilized for this goal. Hence, we generalize the definition of autocorrelation to an autocorrentropy function. The name correntropywas coined to reflect the fact that the function “looks like” correlation but the sum over the lags (or over dimensions of the multivariate random variable) is the information potential (i.e., the argument of Renyi’s quadratic entropy). The definition of cross-correntropy for random variables carries over to time series with a minor but important change in the domain of the variables that now are an index set of lags. When it is clear from the context, we simplify the terminology and refer to the different functions (autocorrentropy, or crosscorrentropy) simply as correntropy function, but keep the word “function” to distinguish them from Chapter 10 quantities.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Amari S., Cichocki A., Yang H., A new learning algorithm for blind signal separation. Advances in Neural Information Processing Systems, vol. 8 pp. 757–763, MIT Press, Cambridge, MA, 1996.
Aronszajn N., Theory of reproducing kernels, Trans. of the Amer. Math. Soc., 68(3):337–404, 1950.
Bagshaw P., Paul Bagshaw’s database for evaluating pitch determination algorithms. Available online at http://www.cstr.ed.ac.uk/research/projects/fda.
Beadle E., Schroeder J., Moran B., An overview of Renyi’s entropy and some potential applications, 42 nd Asilomar Conference on Signals, Systems and Computers, October 2008.
Belouchrani A., Abed-Meraim K., Cardoso J., Moulines E., A blind source separation technique using second-order statistics, IEEE Trans. Signal Process. 45(2):434–444, 1997.
Bercher J., Vignat C., Estimating the Entropy of a Signal with Applications, IEEE Trans. Signal Process., 48(6):1687–1694, 2000.
Brown J., Puckette M., Calculation of a “narrowed” autocorrelation function, J. Acoust. Soc. Am., 85:1595–1601, 1989.
Cardoso J., Souloumiac A., Blind beamforming for non-Gaussian signals, Radar Signal Process., IEE Proc. F, 140(6):362–370, December 1993.
Comon P., Independent component analysis, a new concept?, Signal Process., 36(3):287–314, 1994.
Gretton, A., Herbrich R., Smola A., Bousquet O., Schölkopf B., Kernel Methods for Measuring Independence,” J. Mach. Learn. Res., 6:2075–2129, 2005.
Hardoon D., Szedmak S., Shawe-Taylor J., Canonical correlation analysis: an overview with application to learning methods, Neur. Comput., 16(12):2664–2699, Dec. 2004.
Hess W., Pitch Determination of Speech Signals. Springer, New York, 1993.
Hild II K., Erdogmus D., Principe J., An analysis of entropy estimators for blind source separation, Signal Process., 86(1):182–194, 2006.
Hyvarinen A., Fast and Robust Fixed-Point Algorithms for Independent Component Analysis, IEEE Trans. Neural Netw., 10(3):626–634, 1999.
Jeong K.H., Liu W., Principe J., The correntropy MACE filter, Pattern Recogn., 42(5):871–885, 2009.
Jeong K.W., Principe J., Enhancing the correntropy MACE filter with random projections, Neurocomputing, 72(1–3):102–111, 2008.
Jutten C., Herault J., Blind separation of sources, part I: An adaptive algorithm based on neuromimetic architecture. Signal Process., 24:1–10, 1991.
Kumar B., Minimum variance synthetic discriminant functions, J. Opt. Soc. Am., A3(10):1579–1584, 1986.
Kumar B., Tutorial survey of composite filter designs for optical correlators, Appl. Opt., 31:4773–4801, 1992.
Kumar B., Savvides M., Xie C., Venkataramani K., Biometric verification with correlation filters, Appl. Opt., 43(2):391–402, 2004.
Li R., Liu W., Principe J., A unifying criterion for blind source separation based on correntropy, Signal Process., Special Issue on ICA, 8(78):1872–1881.
Liu W., Pokharel P., Principe J., Correntropy: Properties and applications in non Gaussian signal processing, IEEE Trans. Sig. Proc., 55(11):5286–5298, 2007.
Loève, M.M., Probability Theory, VanNostrand, Princeton, NJ, 1955.
Mahalanobis A., Kumar B., Casasent D., Minimum average correlation energy filters, Appl. Opt., 26(17):3633–3640, 1987.
Mahalanobis A., Forman A., Bower M., Cherry R., Day N., Multi-class SAR ATR using shift invariant correlation filters, Pattern Recogn., 27:619–626 Special Issue on Correlation Filters and Neural Networks, 1994.
Mardia K., Jupp P., Directional Statistics, Wiley, New York, 2000.
Mercer J., Functions of positive and negative type, and their connection with the theory of integral equations, Philosoph. Trans. Roy. Soc. Lond., 209:415–446, 1909.
Mika S., Ratsch G., Weston J., Scholkopf B., Muller K., Fisher discriminant analysis with kernels. In Proceedings of IEEE International Workshop on Neural Networks for Signal Processing, pages 41–48, Madison, USA, August 23–25, 1999.
Papoulis A., Probability, Random Variables and Stochastic Processes, McGraw-Hill, New York, 1965.
Parzen E., Statistical inference on time series by Hilbert space methods, Tech. Report 23, Stat. Dept., Stanford Univ., 1959.
Patterson R., Holdsworth J., Nimmo-Smith I., Rice P., SVOS final report, Part B: Implementing a gammatone filterbank, Appl. Psychol. Unit Rep.2341, 1988
Pokharel P., Xu J., Erdogmus D., Principe J., A closed form solution for a nonlinear Wiener filter, Proc. IEEE Int. Conf. Acoustics Speech and Signal Processing, Toulose, France, 2006.
Principe J., Euliano N., Lefebvre C., Neural Systems: Fundamentals through Simulations, CD-ROM textbook, John Wiley, New York, 2000.
Ross T., Worrell S., Velten V., Mossing J., Bryant M., Standard SAR ATR evaluation experiments using the MSTAR public release data set, in: Proceedings of the SPIE, vol. 3370, 1998, pp. 566–573.
Santos J., Alexandre L., Sa J., The error entropy minimization algorithm for neural network classification, in A. Lofti (Ed.), Int Conf. Recent Advances in Soft Computing, pp. 92–97, 2004.
Schölkopf, B., Burges, C.J.C., Smola, A.J. (Eds.), Advances in Kernel Methods: Support Vector Learning. MIT Press, Cambridge, MA, 1999.
Schölkopf B. and Smola A., Learning with Kernels. MIT Press, Cambridge, MA, 2002
Shawe-Taylor J. Cristianini N., Kernel Methods for Pattern Analysis. Cambridge University Press, Cambridge, UK, 2004.
Silverman B., Density Estimation for Statistics and Data Analysis, Chapman and Hall, London, 1986.
Vapnik V., The Nature of Statistical Learning Theory, Springer-Verlag, New York, 1995
Wang D., Brown G., Computational Auditory Scene Analysis—Principles, Algorithms, and Applications. Wiley, New York, 2006.
Wu H., Principe J., Simultaneous diagonalization in the frequency domain for source separation, Proc. First Int. Workshop on Ind. Comp. Anal. ICA’99, 245–250, Aussois, France, 1999.
Xie C., Savvides M., Kumar B., Kernel correlation filter based redundant class dependence feature analysis on FRGC2.0 data, in: Proc. second Int. Workshop Analysis Modeling Faces Gesture (AMFG), Beijing, 2005.
Xu J., Principe J., A pitch detector based on a generalized correlation function, IEEE Trans. Audio, Speech Lang. Process., 16(8):1420–1432, 2008.
Xu J., Nonlinear Signal Processing Based on Reproducing Kernel Hilbert Space, Ph.D. Thesis, University of Florida, Gainesville, 2008.
Author information
Authors and Affiliations
Rights and permissions
Copyright information
© 2010 Springer Science+Business Media, LLC
About this chapter
Cite this chapter
Pokharel, P., Santamaria, I., Xu, J., Jeong, Kh., Liu, W. (2010). Correntropy for Random Processes: Properties and Applications in Signal Processing. In: Information Theoretic Learning. Information Science and Statistics. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-1570-2_11
Download citation
DOI: https://doi.org/10.1007/978-1-4419-1570-2_11
Published:
Publisher Name: Springer, New York, NY
Print ISBN: 978-1-4419-1569-6
Online ISBN: 978-1-4419-1570-2
eBook Packages: Computer ScienceComputer Science (R0)