Synonyms
Related Concepts
Definition
Let n be a prime number, and let \({\mathbb{G}}_{1} =\langle {g}_{1}\rangle\), \({\mathbb{G}}_{2} =\langle {g}_{2}\rangle\), \({\mathbb{G}}_{3}\) be (multiplicatively written) cyclic groups of order n. A pairing on \(({\mathbb{G}}_{1}, {\mathbb{G}}_{2}, {\mathbb{G}}_{3})\) is a map
that satisfies the following three conditions:
- 1.
(Bilinearity) For all \({r}_{1},{r}_{2} \in {\mathbb{G}}_{1}\) and \({s}_{1},{s}_{2} \in {\mathbb{G}}_{2}\), \(\hat{e}({r}_{1}{r}_{2},{s}_{1}) =\hat{ e}({r}_{1},{s}_{1}) \cdot \hat{ e}({r}_{2},{s}_{1})\) and \(\hat{e}({r}_{1},{s}_{1}{s}_{2}) =\hat{ e}({r}_{1},{s}_{1}) \cdot \hat{ e}({r}_{1},{s}_{2})\).
- 2.
(Non-degeneracy) \(\hat{e}({g}_{1},{g}_{2})\neq 1\).
- 3.
(Computability) \(\hat{e}(r,s)\) can be efficiently computed for all \(r \in {\mathbb{G}}_{1}\) and \(s \in...
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Recommended Reading
Balasubramanian R, Koblitz N (1998) The improbability that an elliptic curve has sub-exponential discrete log problem under the Menezes-Okamoto-Vanstone algorithm. J Cryptol 11:141–145
Barreto P, Galbraith S, Ó’hÉigeartaigh C, Scott M (2007) Efficient pairing computation on supersingular abelian varieties. Design Codes Cryptogr 42:239–271
Galbraith S (2005) Pairings. In Blake I, Seroussi G, Smart N (eds) Advances in elliptic curve cryptography. Cambridge University Press, Cambridge
Hankerson D, Menezes A, Scott M (2008) Software implementation of pairings. In Joye M, Neven G (eds) Identity-based cryptography. IOS Press, Amsterdam
Lee E, Lee H-S, Park CM (2009) Efficient and generalized pairing computation on abelian varieties. IEEE Trans Inf Theor 55: 1793–1803
Lenstra A (2001) Unbelievable security: matching AES security using public key systems. Advances in cryptology–Asiacrypt 2001, Lecture Notes in Computer Science 2248:67–86. Springer, Berlin
Miller V (2004) The Weil pairing, and its efficient calculation. J Cryptol 17:235–261
Oliveira LB, Scott M, López J, Dahab R (2008) TinyPBC: pairings for authenticated identity-based non-interactive key distribution in sensor networks. Networked sensing systems pp. 173–180. See also Cryptology ePrint Archive: Report 2007/482, http://eprint.iacr.org/2007/482
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2011 Springer Science+Business Media, LLC
About this entry
Cite this entry
Hankerson, D., Menezes, A. (2011). Pairings. In: van Tilborg, H.C.A., Jajodia, S. (eds) Encyclopedia of Cryptography and Security. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-5906-5_254
Download citation
DOI: https://doi.org/10.1007/978-1-4419-5906-5_254
Publisher Name: Springer, Boston, MA
Print ISBN: 978-1-4419-5905-8
Online ISBN: 978-1-4419-5906-5
eBook Packages: Computer ScienceReference Module Computer Science and Engineering