Skip to main content

Pairings

  • Reference work entry
  • 151 Accesses

Synonyms

Bilinear pairings

Related Concepts

Identity-Based Cryptosystems; Pairing-Based Key Exchange

Definition

Let n be a prime number, and let \({\mathbb{G}}_{1} =\langle {g}_{1}\rangle\), \({\mathbb{G}}_{2} =\langle {g}_{2}\rangle\), \({\mathbb{G}}_{3}\) be (multiplicatively written) cyclic groups of order n. A pairing on \(({\mathbb{G}}_{1}, {\mathbb{G}}_{2}, {\mathbb{G}}_{3})\) is a map

$$\hat{e} : {\mathbb{G}}_{1} \times {\mathbb{G}}_{2} \rightarrow {\mathbb{G}}_{3}$$

that satisfies the following three conditions:

  1. 1.

    (Bilinearity) For all \({r}_{1},{r}_{2} \in {\mathbb{G}}_{1}\) and \({s}_{1},{s}_{2} \in {\mathbb{G}}_{2}\), \(\hat{e}({r}_{1}{r}_{2},{s}_{1}) =\hat{ e}({r}_{1},{s}_{1}) \cdot \hat{ e}({r}_{2},{s}_{1})\) and \(\hat{e}({r}_{1},{s}_{1}{s}_{2}) =\hat{ e}({r}_{1},{s}_{1}) \cdot \hat{ e}({r}_{1},{s}_{2})\).

  2. 2.

    (Non-degeneracy) \(\hat{e}({g}_{1},{g}_{2})\neq 1\).

  3. 3.

    (Computability) \(\hat{e}(r,s)\) can be efficiently computed for all \(r \in {\mathbb{G}}_{1}\) and \(s \in...

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   799.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   949.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Recommended Reading

  1. Balasubramanian R, Koblitz N (1998) The improbability that an elliptic curve has sub-exponential discrete log problem under the Menezes-Okamoto-Vanstone algorithm. J Cryptol 11:141–145

    MATH  MathSciNet  Google Scholar 

  2. Barreto P, Galbraith S, Ó’hÉigeartaigh C, Scott M (2007) Efficient pairing computation on supersingular abelian varieties. Design Codes Cryptogr 42:239–271

    MATH  Google Scholar 

  3. Galbraith S (2005) Pairings. In Blake I, Seroussi G, Smart N (eds) Advances in elliptic curve cryptography. Cambridge University Press, Cambridge

    Google Scholar 

  4. Hankerson D, Menezes A, Scott M (2008) Software implementation of pairings. In Joye M, Neven G (eds) Identity-based cryptography. IOS Press, Amsterdam

    Google Scholar 

  5. Lee E, Lee H-S, Park CM (2009) Efficient and generalized pairing computation on abelian varieties. IEEE Trans Inf Theor 55: 1793–1803

    Google Scholar 

  6. Lenstra A (2001) Unbelievable security: matching AES security using public key systems. Advances in cryptology–Asiacrypt 2001, Lecture Notes in Computer Science 2248:67–86. Springer, Berlin

    Google Scholar 

  7. Miller V (2004) The Weil pairing, and its efficient calculation. J Cryptol 17:235–261

    MATH  Google Scholar 

  8. Oliveira LB, Scott M, López J, Dahab R (2008) TinyPBC: pairings for authenticated identity-based non-interactive key distribution in sensor networks. Networked sensing systems pp. 173–180. See also Cryptology ePrint Archive: Report 2007/482, http://eprint.iacr.org/2007/482

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this entry

Cite this entry

Hankerson, D., Menezes, A. (2011). Pairings. In: van Tilborg, H.C.A., Jajodia, S. (eds) Encyclopedia of Cryptography and Security. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-5906-5_254

Download citation

Publish with us

Policies and ethics